摘要
用机械合金(MA)和放电等离子烧结(SPS)方法制备出Nb掺杂的Pb1.1Te合金块体,在323-673 K温区内测试其电阻率、Seebeck系数和热扩散系数,并计算其热电优值。结果表明:在Pb1.1Te中掺杂Nb能有效提高材料的载流子浓度,优化其电性能,使Pb1.03Nb0.07Te的功率因子在523-673 K温区范围内超过20 m W/(cm·K2)。同时,Nb的引入可增强声子散射,降低晶格热导率,从而得到较高的热电优值。样品Pb1.03Nb0.07Te在673 K时ZT值最大为1.27,是基体材料Pb1.1Te的2倍。
Bulk Nb- doped lead telluride Pb1.1Te was prepared by using a combined process of mechanical alloying(MA) and spark plasma sintering(SPS). Then its transport properties such as electrical resistivity, Seebeck coefficient and thermal diffusion coefficient were measured in a temperature range from 323 K to 673 K. As a result, the doped Nb can effectively enhance the phonon scattering ability of the lead telluride Pb1.1Te, and optimize its electrical performance as well. Large power factors of over 20 m W/(cm· K2) were obtained in a wide temperature range(523-623 K). In addition, the thermal conductivity decreased with the increasing Nb content, which may also be resulted from the increase of the phonon scattering ability, thereby an optimal ZT value may be found. A maximum ZT value of 1.27 was obtained for Pb1.03Nb0.07 Te at 673 K, which was twice as high as that for the un-doped Pb1.1Te.
出处
《材料研究学报》
EI
CAS
CSCD
北大核心
2015年第2期115-119,共5页
Chinese Journal of Materials Research