期刊文献+

核零空间线性鉴别分析及其在人脸识别中的应用 被引量:10

Kernel Null Space Linear Discriminant Analysis and Its Applications in Face Recognition
下载PDF
导出
摘要 零空间线性鉴别分析NLDA充分利用样本总类内离散度矩阵的零空间信息,能有效克服线性鉴别分析LDA的小样本问题.核方法通过非线性映射,将输入空间样本映射到高维特征空间,再在高维特征空间利用线性特征提取算法.因此,核方法属于非线性特征提取算法.文中结合LDA、NLDA和核方法的优点,引入了核零空间线性鉴别分析KNLDA,导出了KNLDA算法.该算法通过引入核函数,得到低维矩阵,有效避免了直接计算复杂的非线性映射函数,解决了高维类内离散度矩阵的维数灾难问题.同时,将KNLDA算法应用于人脸识别.基于ORL人脸数据库以及ORL与Yale混合人脸数据库的实验结果表明了KNLDA算法的有效性. Null space linear discriminant analysis(NLDA)takes full advantage of the null space information of the total within-class scatter matrix of samples,in which the small sample size problem(S3problem)of LDA can be overcome.Through kernel method,the samples in the input space are transformed into a high-dimensional feature space by nonlinear mapping.Then,linear feature extraction algorithm is used in the high-dimensional feature space.Therefore,kernel method belongs to nonlinear feature extraction algorithm.In this paper,combined with the merits of LDA,NLDA and kernel method,kernel null space linear discriminant analysis(KNLDA)is investigated,in which kernel function is introduced and a low-dimensional matrix is obtained.The difficulty is avoided effectively that complex nonlinear mapping function is computed directly,and the problem is solved that there exists dimension disaster to high-dimensional within-class scatter matrix.In the meantime,KNLDA algorithm is applied in face recognition.Experimental results on ORL(Olivetti Research Laboratory)face database,ORL and Yale mixture face database show that KNLDA algorithm is valid in face recognition.
出处 《计算机学报》 EI CSCD 北大核心 2014年第11期2374-2379,共6页 Chinese Journal of Computers
基金 国家自然科学基金(61372193 61072127 61070167) 广东省自然科学基金(2013010013311 10152902001000002 S2011010001085 S2011040004211) 广东省高等学校高层次人才项目(粤教师函[2010]79号)资助~~
关键词 核零空间线性鉴别分析 零空间线性鉴别分析 核方法 人脸识别 kernel null space linear discriminant analysis null space linear discriminant analysis kernel method face recognition
  • 相关文献

参考文献13

  • 1Ruiz-del-Solar J, Quinteros J. Illumination compensation and normalization in eigenspace-based face recognition; A eomparative study of different pre-proeessing approaches. Pattern Recognition Letters, 2008, 29(14): 1966-1979. 被引量:1
  • 2甘俊英,张有为.模式识别中广义核函数Fisher最佳鉴别[J].模式识别与人工智能,2002,15(4):429-434. 被引量:24
  • 3Chen L F, Liao H Y M, Lin J C, et al. A new LOA-based face recognition system which can solve the small sample size problem. Pattern Recognition, 2000, 33(10): 1731-1726. 被引量:1
  • 4Huang R, Liu Q S, Lu H Q, Ma S O. Solving the small sample size problem of LOA/ /Proceedings of International Conference on Pattern Recognition. Quebec, Canada, 2002, 3: 29-32. 被引量:1
  • 5Liu W, Wang Y H, Li S Z, Tan T N. Null space-based kernel Fisher discriminant analysis for face recognition/ / Proceedings of International Conference on Automatic Face and Gesture Recognition. Seoul, Korea, 2004: 369-374. 被引量:1
  • 6Zhao Tuo, Liang Zhi-zheng , Zhang David, Liu Ya-Hui. A novel null space-based kernel discriminant analysis for face recognition/ /Proceedings of International Conference on Biometrics, Seoul Korea. 2007: 547-556. 被引量:1
  • 7Liu W, Wang Y H, Li S Z, Tan T N. Null space approach of Fisher discriminant analysis for face recognition/ /Proceedings of European Conference on Computer Vision, Biometric Authentication Workshop. Prague, Czech Republic, 2004: 32-44. 被引量:1
  • 8Yang j ian , Frangi Alejandro F, Yang j ing-Yu , et al. KPCA plus LOA: A complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (2) : 230-244. 被引量:1
  • 9Howland Peg. Wang Iiao-Lin , Park Haesun. Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognition. 2006. 39(2): 277-287. 被引量:1
  • 10Yang .Iian , Yang Iing-Yu, Why can LDA be performed in peA transformed space? Pattern Recognition. 2003. 36(2): 563-566. 被引量:1

二级参考文献7

  • 1Fisher R A. The Statistical Utilization of Multiple Measurements. Annals of Eugenics, 1938, 8: 376- 386 被引量:1
  • 2Mika S, Ratsch G, Weston J, Scholkopf B, Muller K. Fisher Discriminant Analysis with Kernels. In: Proc of the IEEE Neural Networks for Signal Processing Workshop, Madison, 1999, 41 - 48 被引量:1
  • 3Scholkopf B, Mika S, et al. Input Space Versus Feature Space in Kernel-Based Methods. IEEE Trans on Neural Networks, 1999, 10(5): 1000- 1017 被引量:1
  • 4Weston J, Watkins C. Support Vector Machines for Multi-Class Pattern Recognition. In: Proc of 7th European Symposium on Artificial Neural Networks, Bruges, Belgium, 1999, 219- 224 被引量:1
  • 5Foley D H, Sammon J W. An Optimal Set of Discriminant Vectors. IEEE Trans on Computers, 1975, 24(3) : 281 - 289 被引量:1
  • 6Baudat G, Anouar F. Generalized Discriminant Analysis Using a Kernel Approach. Neural Computation, 2000, 12 : 2385 - 2404 被引量:1
  • 7郭跃飞,黄修武,杨静宇.一种求解Fisher最佳鉴别矢量的新算法及人脸识别[J].中国图象图形学报(A辑),1999,4(2):95-98. 被引量:9

共引文献23

同被引文献86

引证文献10

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部