期刊文献+

类多变量方程误差类系统的递阶多新息辨识方法 被引量:13

Hierarchical multi-innovation identification methods for multivariable equation-error-like type systems
下载PDF
导出
摘要 根据递阶辨识原理,研究了类多变量方程误差系统和类多变量方程误差ARMA系统递阶随机梯度方法和递阶梯度迭代方法、递阶最小二乘方法和递阶最小二乘迭代方法.进一步利用多新息辨识理论,推导了递阶多新息梯度辨识方法和递阶多新息最小二乘辨识方法.为减小计算量,推导了基于滤波的类多变量方程误差ARMA系统递阶辨识方法和递阶多新息辨识方法.讨论了几个典型辨识算法的计算量,并给出了计算参数估计的步骤. According to the hierarchical identification principle,this paper presents the hierarchical stochastic gra-dient algorithms and the hierarchical gradient based iterative algorithms, the hierarchical least squares algorithms and the hierarchical least squares based iterative algorithms for multivariable equation-error-like systems and multi-variable equation-error ARMA-like systems,and further derives the hierarchical multi-innovation gradient algorithms and the hierarchical multi-innovation least squares algorithms. In order to reduce computational burdens,this paper derives the filtering based hierarchical identification algorithms and the filtering based hierarchical multi-innovation identification algorithms for multivariable equation-error ARMA-like systems using the filtering technique. Finally, the computational efficiency and the computational steps of some typical identification algorithms are discussed.
作者 丁锋 王艳娇
出处 《南京信息工程大学学报(自然科学版)》 CAS 2014年第5期385-404,共20页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(61273194) 江苏省自然科学基金(BK2012549) 高等学校学科创新引智"111计划"(B12018)
关键词 参数估计 递推辨识 梯度搜索 最小二乘搜索 多新息辨识理论 递阶辨识原理 类多变量系统 数据滤波技术 parameter estimation recursive identification gradient search least squares search multi-innovation identification theory hierarchical identification principle multivariable-like system data filtering technique
  • 相关文献

参考文献36

  • 1Ding F, Chen T.Hierarchical gradient-based identification of muhivariable discrete-time systems [ J ]. Automatica, 2005,41 (2) :315-325. 被引量:1
  • 2丁锋.系统辨识(5):迭代搜索原理与辨识方法[J].南京信息工程大学学报(自然科学版),2011,3(6):481-510. 被引量:18
  • 3Ding F, Qiu L, Chen T. Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems[J].Automatica, 2009,45 (2) : 324-332. 被引量:1
  • 4Wang D Q, Ding F. Performance analysis of the auxiliary models based multi-innovation stochastic gradient estima- tion algorithm for output error systems [J].Digital Signal Processing ,2010,20(3) :750-762. 被引量:1
  • 5丁锋著..系统辨识 辨识方法性能分析[M].北京:科学出版社,2014:524.
  • 6丁锋.辨识方法的计算效率(3):信息向量耦合算法[J].南京信息工程大学学报(自然科学版),2012,4(6):481-495. 被引量:9
  • 7Ding F, Chen T. Performance analysis of muhi-innovation gradient type identification methods [ J ]. Automatica, 2007,43(1) :1-14. 被引量:1
  • 8丁锋,萧德云.多变量系统状态空间模型的递阶辨识[J].控制与决策,2005,20(8):848-853. 被引量:23
  • 9Ding F, Chen T.On iterative solutions of general coupled matrix equations [ J ]. SIAM Journal on Control and Opti- mization, 2006,44 (6) : 2269-2284. 被引量:1
  • 10Liu Y J, Ding F, Shi Y. An efficient hierarchical identifi- cation method for general dual-rate sampled-data systems [J].Automatica,2014,50(3) :962-970. 被引量:1

二级参考文献215

共引文献204

同被引文献241

引证文献13

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部