期刊文献+

泛化改进的局部切空间排列算法 被引量:2

Local Tangent Space Alignment Algorithm of Generalized Improvement
下载PDF
导出
摘要 改进的局部切空间排列(ILTSA)算法解决了当样本稀疏、分布不均匀或数据流密度曲率变化较大时,局部切空间排列算法不能揭示流形结构的问题,用于人脸识别能提取更好的低维特征,但不能有效处理不断增加的数据集的问题。为此,提出一种可泛化的ILTSA(GILTSA)算法。结合类别信息定义样本间的距离实现各样本的近邻集选择,基于ILTSA算法求解训练样本集的低维流形,对每个新样本寻找其在训练样本集中的最近邻,然后根据ILTSA算法原理求得其近似低维流形。在ORL、Yale和埃塞克斯大学人脸库上的实验结果表明,与主成分分析算法和线性局部切空间排列算法等相比,GILTSA算法具有更好的识别率。 The Improved Local Tangent Space Alignment ( ILTSA ) can obtain better low dimension feature for face recognition because it can efficiently recover the problem that the Local Tangent Space Alignment( LISA) fails to reveal the manifold structure in the case when data are sparse or non-uniformly distribute or when the data manifold has large curvatures. To solve the problem that the ILTSA cannot efficiently handle ever-increasing data set,this paper presents a Generalization method for the ILTSA( GILTSA) . The nearest neighborhood set is obtained based on the distance defined according to the classes of the samples, then the low manifold of the training set is implemented using the ILTSA. Through finding the nearest sample in the training set,and the low manifold of a new sample is approximately calculated by the projection of its nearest sample. Experimental results on the ORL,the Yale and the University of Essex face image database indicate that the proposed GILTSA method increases the overall accuracy compared with Principal Component Analysis( PCA) and Linear Local Tangent Space Alignment( LLTSA) algorithm etc.
出处 《计算机工程》 CAS CSCD 2014年第11期160-166,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61171152) 浙江省自然科学基金资助项目(LY13F020044)
关键词 流形学习 局部切空间排列 泛化 特征提取 人脸识别 manifold learning Local Tangent Space Alignment(LTSA) generalization feature extraction face recognition
  • 相关文献

参考文献20

  • 1Jolliffe I.Principal Component Analysis[M].[S.l.]: John Wiley & Sons,Ltd.,2005. 被引量:1
  • 2Comon P.Independent Component Analysis,a New Concept[J].Signal Processing,1994,36(3):287-314. 被引量:1
  • 3Duda R O,Hart P E,Stork D G.Pattern Classification [M].[S.l.]:John Wiley & Sons,Ltd.,2012. 被引量:1
  • 4Seung H S,Lee D D.The Manifold Ways of Perception[J].Science,2000,290(5500):2268-2269. 被引量:1
  • 5Shashua A,Levin A,Avidan S.Manifold Pursuit:A New Approach to Appearance Based Recognition[C]// Proceedings of the 16th International Conference on Pattern Recognition.[S.l.]:IEEE Press,2002:590-594. 被引量:1
  • 6Wong E K,Chen M.A New Robust Algorithm for Video Text Extraction[J].Pattern Recognition,2003,36(6):1397-1406. 被引量:1
  • 7朱明旱..基于流形学习的人脸表情识别研究[D].中南大学,2009:
  • 8Tenenbaum J B,de Silva V,Langford J C.A Global Geometric Framework for Nonlinear Dimensionality Reduction [J].Science,2000,290(5500):2319-2323. 被引量:1
  • 9Roweis S T,Saul L K.Nonlinear Dimensionality Reduction by Locally Linear Embedding [J].Science,2000,290(5500):2323-2326. 被引量:1
  • 10谭璐..高维数据的降维理论及应用[D].国防科学技术大学,2005:

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部