期刊文献+

基于核模糊聚类的变分水平集医学图像分割 被引量:3

Variational level set medical image segmentation based on kernel fuzzy clustering
下载PDF
导出
摘要 针对李春明提出的"无需重新初始化的变分水平集分割模型"存在对内部像素灰度值相近、边缘分离性差、图像分割效果不理想等问题,提出了一种改进的基于核模糊聚类的变分水平集医学图像分割方法.将原始图像进行核模糊C均值聚类处理得到聚类图像,并将其引入初始水平集函数中.然后将改进的边缘指示函数代入李模型中,实现最终的图像分割.通过对人体脑部、肩部MR医学图像进行试验,并采用最大香农熵进行客观评价.结果表明所提出方法的最大香农熵的值在一定程度上大于李模型方法,且运行时间和迭代次数都有所减少,证明了新方法具有良好的分割质量、适应性强,且无需重新初始化. The existing variational level set without re-initialization model proposed by Li Chunming is less sensitive to images of similar internal pixel gray value with bad edge separation,and the segmentation results are not satisfying.To solve the problems,the variational level set medical image segmentation method was proposed based on kernel fuzzy clustering.The original image was transformed by kernel fuzzy C-means clustering,and the clustering results were introduced into the initial level set function.The improved edge indicator function was brought into the Li model to achieve the ultimate image segmentation.The experiments were conducted on MR images of human brain and shoulder with the proposed method,and the results were objectively evaluated with the maximum Shannon entropy.The experimental results show that the maximum Shannon entropy of the proposed method is higher than that of Li model method to a certain extent,and the proposed method contains less elapsed time and less iteration times at the same time.The proposed method has good segmentation quality and strong adaptability without re-initialization.
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第6期693-698,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61402204) 江苏省自然科学基金资助项目(BK20130529) 高等学校博士学科点专项科研基金资助项目(20113227110010) 镇江市科技计划项目(SH2014110)
关键词 核模糊C均值聚类 变分水平集 李模型 边缘指示函数 图像分割 kernel fuzzy C-means clustering method variational level set Li model edge indicator function image segmentation
  • 相关文献

参考文献11

  • 1Osher S, Sethian J A. Fronts propagating with curvature dependent speed: algorithms based on Hamihon-Jacobi formulations [ J]. Journal of Computational Physics, 1988, 79:12-49. 被引量:1
  • 2Wang Lingfeng, Pan Chunhong. Image-guided regulari- zation level set evolution for MR image sementation and bias field correction [ J ]. Magnetic Resonance Imaging, 2014, 32(1) :71 -83. 被引量:1
  • 3Yang Xiaopeng, Yu Hee Chul, Choi Younggeun, et al. A hybrid semi-automatic method for liver segmentation based on level-set methods using multiple seed points [ J ]. Computer Methods and Programs in Biomedicine, 2014, 113(1) :69 -79. 被引量:1
  • 4温军玲,严壮志,孙玉彪,林笑曼.集成边缘和区域信息的格子波尔兹曼模型图像分割[J].江苏大学学报(自然科学版),2013,34(6):687-692. 被引量:4
  • 5Li Chunming, Xu Chenyang, Gui Changfeng, et al. Level set evolution without re-initialization: a new variational for- mulation [ C ] //Proceedings of the 2005 IEEE Computer So- ciety Conference on Computer Vision and Pattern Recogni- tion. San Diego:IEEE Computer Soeiety,2005:430-436. 被引量:1
  • 6常先堂..基于PDE的变分水平集图像分割方法[D].大连理工大学,2006:
  • 7刘雅婧,宋余庆,廖定安,夏倩倩.基于核模糊聚类的变分水平集医学图像分割方法[J].计算机应用研究,2013,30(11):3510-3513. 被引量:10
  • 8Zanaty E A. Determining the number of clusters for ker- nelized fuzzy C-means algorithms for automatic medical image segmentation [ J ]. Egyptian Informatics Journal, 2012, 13:39-58. 被引量:1
  • 9李旭超,刘海宽,王飞,白春艳.图像分割中的模糊聚类方法[J].中国图象图形学报,2012,17(4):447-458. 被引量:66
  • 10Saikumar T, Yojana K, Rao Ch M, et al. Fast improved kernel fuzzy C-means (IKFCM) clustering for image segmentation on level set method [ C ] //Proceedings of IEEE International Conference on Advances in Engirtee- ring, Science and Management. Nagapattlnanl: IEEE Computer Society, 2012:445 - 449. 被引量:1

二级参考文献79

共引文献125

同被引文献22

  • 1翟建敏,南杰,原韶玲,李强,高太虎,刘建伟,韩飞.超声辅加绘图在甲状腺微小结节定位诊断中的应用[J].中华医学超声杂志(电子版),2013,10(7):585-589. 被引量:5
  • 2Garcia-Lorenzo Daniel, Francis Simon, Narayanan Sri- dar, et al. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging [ J 1. Medical Image Analy- sis, 2013, 17(1):1 -18. 被引量:1
  • 3Mortazavi D, Kouzani A Z, Soltanian-Zadeh H. Seg- mentation of multiple sclerosis lesions in MR images : a review [ J]. Neuroradiology,2012, 54(4) :299 - 320. 被引量:1
  • 4Tomas-Fernandez X, Warfield S K. A new classifier fea- ture space for an improved multiple sclerosis lesion seg- mentation [ C ]//Proceedings of the 2011 8th IEEE Inter- national Symposium on Biomedical Imaging: From Nano to Macro. Chicago: IEEE Computer Society, 2011, 1492 - 1495. 被引量:1
  • 5Bijar A, Khanloo M M, Benavent A P, et al. Segmenta- tion of MS lesions using entropy-based EM algorithm and Markov random fields [ J 1. Journal of Biomedical Sci- ence and Engineering, 2011, (4) : 552 - 561. 被引量:1
  • 6Gelineau-Morel R, Tomassini V, Jenkinson M, et al. The effect of hypointense white matter lesions on automa- ted gray matter segmentation in multiple sclerosis [ J ]. Human Brain Mapping, 2012, 33(12) : 2802 -2814. 被引量:1
  • 7Garca-Lorenzo D, Prima S, Arnold D L, et al. Trimmed-likelihood estimation for focal lesions and tis- sue segmentation in multisequence MRI for multiple sclerosis [ J ]. IEEE Transactions on Medical Imaging, 2011, 30(8) :1455 - 1467. 被引量:1
  • 8Steenwijk M D, Pouwels P J W, Daams M, et al. Accu-rate white matter lesion segmentation by k nearest neigh- bor classification with tissue type priors (kNN-TFPs) [ J]. Neurolmage : Clinical, 2013, 3:462 - 469. 被引量:1
  • 9Sormani M P, Calabrese M, Signori A, et al. Modeling the distribution of new MRI cortical lesions in multiple sclerosis longitudinal studies [ J ]. PLoS One, 2011, 6 (10) :e26712. 被引量:1
  • 10Vrenken H, Jenkinson M, Horsfield M A, et al. Recommendations to improve imaging and analysis of brain lesion load and atrophy in longitudinal studies of multiple sclerosis [ J ]. Journal of Neurology, 2012,260 (10) :2458 -2471. 被引量:1

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部