期刊文献+

一种引入内存平衡的Hadoop平台作业调度算法 被引量:4

A Job Scheduling Algorithm for Hadoop Based on Memory Balancing
下载PDF
导出
摘要 通过实验对FIFO、CAP和FAIR三种调度算法的特点与性能进行了对比分析,得出了它们各自优点和存在的问题.针对公平调度算法Fair Scheduler不适用于内存密集型作业调度的缺点,提出一种基于内存平衡的公平调度算法FMScheduler,在整个调度的过程中考虑作业的内存使用和计算节点的内存情况,通过加入内存比较机制、调整作业公平权重计算方法以及引入作业预留机制,对原有Hadoop公平调度算法进行改进与优化.最后,通过仿真实验对FMScheduler进行测试分析,实验结果表明,FMScheduler在高内存作业调度环境下的独立响应时间和作业整体的平均响应时间都比Fair Scheduler有所减少;并且在多用户多作业且包含内存密集型作业的环境中,FMScheduler与Hadoop原有的三种调度算法相比,在处理数据密集型作业和内存密集型作业的混合场景时,能够更合理公平地调度作业. Abstract: The characteristics and performance of three Hadoop scheduling algorithms, i. e. FIFO, CAP and FAIR, are compared and analyzed through experiment, and both their pros and cons are educed too. Targeting on solving the issue that Fair Scheduler is not suitable for memory-intensive jobs, a novel FMScheduleris proposed on the basis of memory balance. Taking into account the memory usage and the memory of TaskTrackers,FMSchedulerintents to improve and optimize the original Hadoop scheduUng algorithms by mixing memory comparison mechanism, adjusting the calculation method offair weight and introducing job reservation mechanism. Finally,the experimental results demonstrate that compared with existing scheduling algorithms in Hadoop FMScheduler is most suitable and optimal for scheduling in the scene with multi-user, multi-job and containing memory-intensive jobs, because FMScheduler gains the least independent and total average response time of jobs,improves the resource utilization and ensures the memory-intensive jobs more fair execution opportunities.
出处 《小型微型计算机系统》 CSCD 北大核心 2014年第12期2708-2712,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(71161007)资助 海南省国际科技合作专项项目(KJHZ2014-16)资助 海南省重点科技计划项目(ZDXM20130078)资助
关键词 云计算 作业调度 HADOOP 公平调度 Cloud Computing Job Scheduling Hadoop Fair Scheduler
  • 相关文献

参考文献3

二级参考文献12

  • 1胡春明,怀进鹏,沃天宇,雷磊.一种支持端到端QoS的服务网格体系结构[J].软件学报,2006,17(6):1448-1458. 被引量:19
  • 2胡春明,怀进鹏,沃天宇.一种基于松弛时间的服务网格资源能力预留机制[J].计算机研究与发展,2007,44(1):20-28. 被引量:20
  • 3Vaquero L M, Rodero-Merino L, Caceres J, et al. A Break in the Clouds: Towards a Cloud DefinitionD]. ACM SIGCOMM Computer Communication Review, 2009, 39 ( 1 ) : 50- 55. 被引量:1
  • 4Bryant R E. Data-Intensive Supercomputing: the Case for DISC[R]. CMU Technical Report CMU-CS-07-128, Department of Computer Science, Carnegie Mellon University, 2007. 被引量:1
  • 5Dean J, Ghemawat S. MapReduce: Simplied Data Processing on Large Clusters[C]//Proc of OSDI '04,2004 : 137-150. 被引量:1
  • 6Colbyranger, Raghuraman R, Penmetsa A. Evaluating MapReduce for Multi-Core and Multiprocessor Systems[C]//Proc of the IEEE 13th Int'l Syrup on High Performance Computer Architecture, 2007 : 13-24. 被引量:1
  • 7Kruijf M D, Sankaralingam K. MapReduce for the Cell B. E. Architecture[-R]. Technical Report CS-TR-2007-1625, University of Wisconsin Computer Sciences University of Wisconsin, 2007. 被引量:1
  • 8He B S, Fang W B, Luo Q, et al. Mars: A MapReduce Framework on Graphics Processors[C]//Proc of the 17th Int'l Conf on Parallel Architectures and Compilation Techniques, 2008 : 260-269. 被引量:1
  • 9Apache Hadoop. Hadoop [EB/OL]. [2009-03-06]. http://hadoop, apache, org/. 被引量:1
  • 10Yahoo. Yahoo! Hadoop Tutorial [EB/OL]. [2009-02-27]. http:// public, yahoo, com/gogate/hadoop-tutorial/start-tutorial, html. 被引量:1

共引文献25

同被引文献34

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部