期刊文献+

多光谱作物生长传感器温度特性试验 被引量:4

Test on temperature characteristics of multi-spectral sensor for crop growth
下载PDF
导出
摘要 基于光谱的作物无损监测技术可实时地获取作物生长信息,进而为作物的生长调控提供数据支持,为推广该技术在农业生产中的应用,南京农业大学国家信息农业工程技术中心研制了低成本的多光谱作物生长传感器。传感器监测作物720和810nm光谱反射率,根据反射率反演作物的叶层氮含量、叶层氮积累量、叶面积指数和叶干重等作物生长信息。为提高传感器田间应用的温度稳定性,该文研究了温度对传感器输出特性的影响,并利用符号回归技术构建了传感器反射率的温度补偿。试验于恒温恒湿试验箱中进行,试验温度分别设定为6、11、15、20、25、30、35、40,44、49、54、62℃,相对湿度保持为40%不变,以40%和60%反射率标准灰度板为传感器的监测对象。研究结果表明,在光强不变的情况下,传感器输出电压随温度的升高呈增加趋势,反射率则表现为下降趋势。构建的温度补偿模型使反射率因温度影响产生的波动由1%~2.6%下降到0.45%以下,成对t检验结果表明反射率的温度补偿模型可显著降低温度对传感器反射率的影响(P=0.015<0.05)。该文传感器温度补偿模型的构建方法具有一定的普适性,可为其他传感器的温度补偿研究提供参考。 In modern agriculture, the application of non-destructive spectroscopic techniques is very useful for estimating crop growth status. Non-destructive monitoring techniques based on spectral reflectance can provide the real-time information required for crop growth regulation. Thus, these techniques have significant application value in crop production. Despite being highly precise, the existing non-destructive spectroscopic techniques such as FieldSpec Pro FR250, GreenSeeker, and Crop Circle ACS-470 are expensive and complicated, hence their application is not suitable for agricultural production especially in China where the average per capita landholding is about 0.1 ha. In order to promote the use of non-destructive monitoring spectrum technology in agriculture, the National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University has developed a multi-spectral sensor for crop growth monitoring. The sensor monitor has a spectral reflectance of 720 nm and 810 nm to access growth indexes of leaf nitrogen content (LNC), leaf nitrogen accumulation (LNA), leaf area index (LAI), and plant dry matter (PDM). Under field conditions, the seasonal variations in temperature and sunlight can affect the internal temperature of the sensors from 10℃to 60℃. Temperature compensation is required to minimize the impacts of internal variations in temperature on the output signal of the sensor. Hardware compensation and software compensation are the two methods of temperature compensation. Hardware compensation methods mainly use electric circuits such as the thermal bridge compensation method and the double electric bridge compensation method to eliminate the influence of temperature. However, these methods are complex, expensive, and have low accuracy. Software compensation methods eliminate the influence of temperature on sensors by building a temperature compensation model, such as an interpolation method, least squares polynomial curve fitting method, least squares suppo
出处 《农业工程学报》 EI CAS CSCD 北大核心 2014年第21期157-164,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家"863"高技术研究发展计划资助项目(2011AA100703) 江苏省农业科技自主创新资金资助项目(SCX(12)3272) 江苏高校优势学科建设工程资助项(PADA)
关键词 传感器 监测 温度 多光谱作物生长传感器 反射率 温度补偿 sensors monitoring temperature multi-spectral sensor for crop growth reflectance temperature compensation
  • 相关文献

参考文献34

  • 1Xue Lihong, Cao Weixing, Luo Weihong, et al. Monitoring leaf nitrogen status in rice with canopy spectral reflectance[J]. Agronomy Journal, 2004, 96(1): 135- 142. 被引量:1
  • 2Delalieux S, Somers B, Hereijgers S, et al. A near-infi'ared narrow-waveband ratio to determine Leaf Area Index in orchards[J]. Remote Sensing of Environment, 2008, 112(10): 3762-3772. 被引量:1
  • 3Brantley Steven T, Zinnert Julie C, Young Donald R. Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies[J]. Remote Sensing of Environment, 2011, 115(2): 514-523. 被引量:1
  • 4Darvishzadeh Roshanak, Skidmore Andrew, Schlerf Martin, et al. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2008, 63(4): 409-426. 被引量:1
  • 5Gitelson A A, Merzlyak M N. Remote estimation of chlorophyll content in higher plant leaves[J]. International Journal of Remote Sensing, 1997, 18(12): 2691 -2697. 被引量:1
  • 6Gitelson A A, Merzlyak M N. Remote sensing of chlorophyll concentration in higher plant leaves[J]. Advances in Space Research, 1998, 22(5): 689-692. 被引量:1
  • 7Castro K L, Sanchez Azofeifa G A. Changes in spectral properties, chlorophyll content and internal rnesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves[J]. Sensors, 2008, 8(1): 51 - 69. 被引量:1
  • 8Jago R A, Cutler M E J, Curran P J. Estimating canopy chlorophyll concentration from field and airborne spectra[J]. Remote Sensing of Environment, 1999, 68(3): 217-224. 被引量:1
  • 9Xue Lihong, Yang Linzhang. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1): 97-106. 被引量:1
  • 10Zarco T P J, Miller J R, Noland T L, et al. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2001, 39(7): 1491 - 1507. 被引量:1

二级参考文献285

共引文献516

同被引文献63

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部