期刊文献+

基于粒子滤波器的移动机器人自定位方法研究 被引量:2

Research on Mobile Robot Localization Based on Particle Filter Algorithm
下载PDF
导出
摘要 首先,对粒子滤波器的原理进行了简要阐述。然后详细描述了基于粒子滤波器的移动机器人自定位算法——蒙特卡洛定位算法。在ROS(Robot Operating System)平台上对该算法进行了仿真实验并分析了其性能。最后,对蒙特卡洛粒子滤波定位方法用于移动机器人定位进行了总结。结果表明,MCL(蒙特卡洛)算法是一种精确鲁棒的移动机器人概率定位方法,可对解决移动机器人的定位问题提供有意义的参考。提出的机器人自定位方法为机器人在Robocup竞赛中自主执行各种作业提供定位支持,已在2013年中国机器人大赛获奖。 Firstly,the research progress and principle of particle filters are overviewed.Secondly,the progress of mobile robot localization based on particle filters is described using Monte Carlo localization algorithm.Thirdly,the algorithm simulation and analysis of its performance is on ROS platform.Finally,the future directions of particle filters in mobile robot localization are summarized.The results verify the effectiveness and efficiency of the proposed MCL provides a valuable reference for mobile robot localization.This paper presents a method of self-localization of robots for providing positioning support for the robot to perform various operations in the Robocup competition,which has been winning in 2013 China Robot Competition.
出处 《工业控制计算机》 2014年第10期43-45,共3页 Industrial Control Computer
关键词 粒子滤波器 蒙特卡洛定位 ROS 移动机器人定位 Particle filters Monte carlo localization Robot Operating System Mobile robot localization
  • 相关文献

参考文献10

  • 1Montemerlo M ,Thrun S.Fast SLAM: a factored solution to the simultaneous localization and mapping problem [C]//Proc the Eighteenth National Confon Artificial Intelligence. Alberta: AAAI , 2002:593-598. 被引量:1
  • 2Quinlan M, Murch C, Moore T, etal. The 2004 NU bots Team Report [R/OL]. http://www.robots.new castle.edu, au / publications /NU bot Final Report 2004. pdf ,2004. 被引量:1
  • 3DOUCET A , FREITAS N , GORDON N. Sequential Monte Carlo methods in practice [M] . New York :Springer , 2001. 被引量:1
  • 4DOUCET A,GODSILL S , ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [J].State Com- pute, 2000-,10(3):197-208. 被引量:1
  • 5张建伟,张立伟,胡颖编著..开源机器人操作系统 ROS[M].北京:科学出版社,2012:303.
  • 6R.PATRICK GOEBEL,ROS By Example-A Do-It-Yourself Guide to the Robot Operating System,2012. 被引量:1
  • 7Dellaert F, Burgard W, Fox D, etal. Using the Condensation algorithm for robust,vision based mobile robot localization [A].Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) [C].Los Alamitos, CA,USA: IEEE Computer Society, 1999. 588-594. 被引量:1
  • 8Bolic M. Architectures for Efficient Implementation of Particle Filters [D].USA:State University of New York at Stony Brook, 2004. 被引量:1
  • 9胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 10Davison A J,Murray D W.Simultaneous localization and map building using active vision[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):865-880. 被引量:1

二级参考文献1

共引文献292

同被引文献31

引证文献2

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部