期刊文献+

基于单目视觉的移动机器人全局定位 被引量:30

Monocular-Vision-Based Mobile Robot Global Localization
下载PDF
导出
摘要 提出在基于单目视觉创建的环境地图中实现移动机器人全局定位.基于KD树的最近邻搜索实现特征匹配.应用尺度不变特征变换(SIFT)方法提取特征,并用多维向量描述,保证了对图像光强变化、尺度缩放、三维视角和噪声具有不变性.提出了一种基于RANSAC的鲁棒定位方法.在实际室内环境Pioneer3机器人上进行的实验表明本文提出方法高效、可靠. An environmental map built with monocular vision is used to implement mobile robot global localization. The feature matching is implemented with the KD-tree-based nearest search approach. The features are extracted with Scale Invariant Feature Transform (SIFF), and discribed with highly distinctive multi-dimensional vector, making features be invariant to changes in illumination, scale, 3D viewpoint and noise. A robust localization based on RANSAC (RANdom SAmple Consensus) approach is presented. Experiments on robot Pioneer 3 with monocular CCD camera in our real indoor environment show that our method is of high precision and stability.
出处 《机器人》 EI CSCD 北大核心 2007年第2期140-144,178,共6页 Robot
基金 国家863计划资助项目(2002AA735041) 国家自然科学基金资助项目(69985002)
关键词 移动机器人 全局定位 KD树 特征提取 RANSAC 单目视觉 mobile robot global localization KD-tree feature extraction RANSAC ( RANdom SAmple Consensus ) monocular vision
  • 相关文献

参考文献5

  • 1Thrun S,Bennewitz M,Burgard W,et al.Minerva:A second-generation museum tour-guide robot[A].Proceedings of the IEEE International Conference on Robotics and Automation[C].Piscataway,NJ,USA:IEEE,1999.1999-2005. 被引量:1
  • 2Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 3Moore A W.An Introductory Tutorial on KD-trees[R].UK:University of Cambridge,1991. 被引量:1
  • 4马颂德,张正友著..计算机视觉 计算理论与算法基础[M].北京:科学出版社,1998:282.
  • 5Fischler M A,Bolles R C.Random sample consensus:A paradigm for model fitting with application to image analysis and automated cartography[J].Communication of the ACM,1981,24(6):381-395. 被引量:1

同被引文献335

引证文献30

二级引证文献186

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部