期刊文献+

基于视觉特征的移动机器人Monte Carlo定位方法 被引量:4

Vision-based Monte Carlo localization for Mobile robot
下载PDF
导出
摘要 提出了一种通过引入基于三角定位的重采样阶段对基于视觉特征的常规Monte Carlo定位加以改进的方法,以提高原有方法的实现效率,既能提高计算效率,又能避免过收敛现象。重采样的实现根据感知更新前后采样分布信息熵的变化和有效采样数目来判断,并且基于感知组织的贝叶斯网络识别视觉特征的方法为三角定位提供了准确的特征来源,有效减少了假阳性特征,大大简化了与环境模型的匹配。实验结果验证了方法的有效性。 Standard vision-based Monte Carlo localization for mobile robot is augmented with triangu- lation-based resampling process introduced to increase computational efficiency and avoid over-convergence in this paper. Bayesian networks based perceptual organization is de- veloped to detect features in office environments, which provides reliable features for trian- gulation-based resampling process, avoids false positives and simplifies correspondence between sensing and models. Experimental results demonstrate the validity of the approach.
出处 《制造业自动化》 2004年第11期35-39,共5页 Manufacturing Automation
基金 国家重点基础研究发展计划(973 计划)(2002CB312200) 国家高技术研究发展计划(863 计划)资助项目 (2002AA420110)
关键词 移动机器人 MONTE Carlo 三角定位 感知组织 BAYESIAN网络 mobile robot Monte Carlo triangulation perceptual organization Bayesian networks
  • 相关文献

参考文献19

  • 1BORENSTEIN J, EVERETT H R, FENG L. "Where am I?" sensors and methods for autonomous mobile robot positioning[M]. Wellesley. Mass.:AK Peters, 1996. 被引量:1
  • 2CHENAVIER F, CROWLEY J L. Position estimation for a mobile robot using vision and odometry[A].IEEE Int. Conf. on Robotics and Automation[C]. 1992.2588-2593. 被引量:1
  • 3DELLAERT F, BURGARD W, FOX D. Using the condensation algorithm for robust, vision-based mobile robot localization[A]. Proceedings of the IEEE Computer Society Conference on CVPR[C]. 1999. 588-594. 被引量:1
  • 4FOX D. KLD-Sampling: Adaptive particle filters and mobile robot localization[Z]. TR-UW-CSE-01-08-02. 2001. 被引量:1
  • 5FOX D, BURGARD W, DELLAERT F. Monte Carlo localization: efficient position estimation for mobile robots[A]. Proceedings of the AAAI-99[C]. Orlando, Florida, 1999.343-349. 被引量:1
  • 6FOX D, BURGARD W, THRUN S. Markov localization for mobile robots in dynamic environments[J]. Journal of Artificial Inteklligence Research, 1999, 11: 391-427. 被引量:1
  • 7GEORGE D, BARNES N. Particle attraction localization[A]. IEEE Int. Conf on Robotics and Automation[C]. 2003. 被引量:1
  • 8GORDON N J, SALMOND D J,SIMTH A F. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proc. on Radar and Signal Processing. 1993, 140(2): 107-113. 被引量:1
  • 9JENSFELT P, WIJK O, AUSTIN D. Experiments on augmenting condensation for mobile robot localization[A]. IEEE Int. Conf on Robotics and Automation[C]. 2000. 被引量:1
  • 10KAELBLING L, CASSANDRA A, KURIEN J. Acting under uncertainty: Discrete Bayesian models for mobilerobot navigation[A]. In Proc. IROS[C]. 1996. 963-972. 被引量:1

同被引文献59

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部