期刊文献+

一种基于调度的分簇无线传感器网络簇首选择策略 被引量:1

Cluster head selection strategy for WSN based on scheduling
下载PDF
导出
摘要 针对无线传感器网络中簇首更换出现的各节点均参与竞争而引起能耗较大的现象,提出了一种基于调度的无线传感器网络簇首选择策略。该策略将各节点分为簇首节点、成员节点和调度节点三种类型,在簇运行阶段,调度节点对各簇中簇首节点和成员节点的能量进行实时监测;在簇首更换阶段,由调度节点根据监测的结果指定相应的簇首节点,从而减少了簇首更换阶段各节点均参与簇首竞争而引起的能量消耗。最后进行了仿真实验与对比,实验结果表明改进的簇首选择策略能够有效地改进网络性能,延长网络生命周期。 In order to decrease energy consumption caused by competition for cluster head of each node during the cluster head replacement phase,this paper proposed a cluster head selection strategy based on scheduling in wireless sensor networks.The strategy divided all nodes into cluster head node,member node and scheduling node three types. In operation phase,the scheduling node makes real-time monitoring for the energy consumption of the cluster head node and the member node. In cluster head replacement phase,the scheduling node specified the corresponding node as cluster head according to the result of monitoring,which thereby reduced the energy consumption caused by competition for cluster head of each node. Finally,the simulation experiment results show that the improved algorithm can effectively improve network performance and prolong the network life cycle.
出处 《计算机应用研究》 CSCD 北大核心 2014年第12期3780-3783,共4页 Application Research of Computers
基金 安徽省教育厅自然科学基金重大项目(KJ2011ZD06) 安徽省高校自然科学基金资助项目(KJ2013Z249) 滁州学院科研启动基金资助项目(2014qd018 2014qd019 2014qd020)
关键词 无线传感器网络 分簇路由 簇首选择 能量均衡 调度 wireless sensor networks(WSN) clustering route cluster head selection energy balance scheduling
  • 相关文献

参考文献15

二级参考文献99

共引文献681

同被引文献17

  • 1Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks:a survey[J] . Computer Networks, 2002, 38(4):393-422. 被引量:1
  • 2Dong Guo, Wang Xiaodong. Dynamic sensor collaboration via sequential Monte Carlo[J] . IEEE Journal on Selected Areas in Communications, 2004, 22(6):1037-1047. 被引量:1
  • 3Nguyen M T, Rahnavard N. Cluster-based energy-efficient data collection in wireless sensor networks utilizing compressive sensing[C] //Proc of IEEE Military Communications Conference. 2013. 被引量:1
  • 4Donoho D L. Compressed sensing[J] . IEEE Trans on Information Theory, 2006, 52(4):1289-1306. 被引量:1
  • 5Baraniuk R G. Compressive sensing[J] . Signal Processing Magazine, 2007, 24(4):118-121. 被引量:1
  • 6Luo Chong, Wu Feng, Sun Jun, et al. Compressive data gathering for large-scale wireless sensor networks[C] //Proc of the 15th Annual International Conference on Mobile Computing and Networking. [S. l.] :ACM Press, 2009:145-156. 被引量:1
  • 7Koh K, Kim S J, Boyd S P. An interior-point method for large-scale l1-regularized logistic regression[J] . Journal of Machine Learning Research, 2007, 8(8):1519-1555. 被引量:1
  • 8Becker S, Bobin J, Candès E J. NESTA:a fast and accurate first-order method for sparse recovery[J] . SIAM Journal on Imaging Sciences, 2011, 4(1):1-39. 被引量:1
  • 9Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing[J] . Applied and Computational Harmonic Analysis, 2009, 27(3):265-274. 被引量:1
  • 10Wang Liangjun, Wu Xiaolin, Shi Guangming. Binned progressive quantization for compressive sensing[J] . IEEE Trans on Image Processing, 2012, 21(6):2980-2990. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部