期刊文献+

分簇感知网络中基于压缩感知的数据收集方法 被引量:6

Data Collection Method in Clustering Sensing Network Based on Compressive Sensing
下载PDF
导出
摘要 为减少分簇感知网络数据通信量、延长网络生命周期,提出一种结合混合压缩感知(CS)技术的分簇无线传感器网络数据收集方法。该方法按地理位置划分感知区域为若干簇,并假设各簇区域中心存在一个虚拟簇头节点,且选取虚拟簇头节点一跳通信范围内的节点为候选簇头节点,使用Prim算法以sink为根节点连接各虚拟簇头节点生成一棵最小生成树,由sink节点开始,为最小生成树各分支中的簇从候选簇头节点中动态规划选出簇头节点,构造以sink节点为根节点且按最小生成树顺序连接各簇头节点的数据传输骨干树。仿真结果表明,当压缩率为10时,与clustering without CS、SPT without CS、SPT with hybrid CS和clustering with hybrid CS方法相比,该方法通信量分别减少了65%、55%、40%和10%。 In order to reduce the cluster sensing network transmissions and prolong network lifetime,this paper proposes a data collection method based on the hybrid Compressive Sensing(CS)technology for clustering Wireless Sensor Network(WSN).It divides the sensing area into several clusters according to the geographical location,assuming there is a Virtual Cluster Head(VCH)in the center of each cluster area,and selects the nodes one hop distance from the VCH as Candidate Cluster Head(CCH).A Minimum Spanning Tree(MST),which chooses sink as root node and connects each VCH,is generated by the Prim algorithm.Starting from the sink,it chooses Cluster Head(CH)from CCH for clusters in each branch of the MST using dynamic programming.A backbone tree that connects all CH to the sink in the sequence of MST is constructed.Simulation results prove that,when the compressive ratio is 10,compared with clustering without CS,SPT without CS,SPT with hybrid CS,and clustering with hybrid CS,the reduction ratio of traffic of the method respectively are 65%,55%,40%and 10%.
作者 李玉龙 刘任任 赵津锋 臧浪 曹斌 LI Yulong;LIU Renren;ZHAO Jinfeng;ZANG Lang;CAO Bin(College of Information Engineering,Xiangtan University,Xiangtan,Hunan 411105,China)
出处 《计算机工程》 CAS CSCD 北大核心 2018年第10期129-135,共7页 Computer Engineering
关键词 分簇感知网络 压缩感知 动态规划 数据收集 最小生成树 簇头选取 clustering sensing network Compressive Sensing(CS) dynamic programming data collection Minimum Spanning Tree(MST) Cluster Head(CH)selection
  • 相关文献

参考文献3

二级参考文献86

  • 1Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. 被引量:1
  • 2Candes E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. 被引量:1
  • 3Candes E. Compressive sampling. In: Proceedings of International Congress of Mathematicians. Madrid, Spain: European Mathematical Society Publishing House, 2006. 1433-1452. 被引量:1
  • 4Baraniuk R G. Compressive sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121. 被引量:1
  • 5Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381(6583): 607-609. 被引量:1
  • 6Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1996. 被引量:1
  • 7Candes E, Donoho D L. Curvelets - A Surprisingly Effective Nonadaptive Representation for Objects with Edges, Technical Report 1999-28, Department of Statistics, Stanford University, USA, 1999. 被引量:1
  • 8Aharon M, Elad M, Bruckstein A M. The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions on Image Processing, 2006, 54(11): 4311-4322. 被引量:1
  • 9Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. IEEE Transactions on Information Theory, 2008, 54(5): 2210-2219. 被引量:1
  • 10Candes E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problems, 2007, 23(3): 969-985. 被引量:1

共引文献206

同被引文献40

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部