摘要
为减少分簇感知网络数据通信量、延长网络生命周期,提出一种结合混合压缩感知(CS)技术的分簇无线传感器网络数据收集方法。该方法按地理位置划分感知区域为若干簇,并假设各簇区域中心存在一个虚拟簇头节点,且选取虚拟簇头节点一跳通信范围内的节点为候选簇头节点,使用Prim算法以sink为根节点连接各虚拟簇头节点生成一棵最小生成树,由sink节点开始,为最小生成树各分支中的簇从候选簇头节点中动态规划选出簇头节点,构造以sink节点为根节点且按最小生成树顺序连接各簇头节点的数据传输骨干树。仿真结果表明,当压缩率为10时,与clustering without CS、SPT without CS、SPT with hybrid CS和clustering with hybrid CS方法相比,该方法通信量分别减少了65%、55%、40%和10%。
In order to reduce the cluster sensing network transmissions and prolong network lifetime,this paper proposes a data collection method based on the hybrid Compressive Sensing(CS)technology for clustering Wireless Sensor Network(WSN).It divides the sensing area into several clusters according to the geographical location,assuming there is a Virtual Cluster Head(VCH)in the center of each cluster area,and selects the nodes one hop distance from the VCH as Candidate Cluster Head(CCH).A Minimum Spanning Tree(MST),which chooses sink as root node and connects each VCH,is generated by the Prim algorithm.Starting from the sink,it chooses Cluster Head(CH)from CCH for clusters in each branch of the MST using dynamic programming.A backbone tree that connects all CH to the sink in the sequence of MST is constructed.Simulation results prove that,when the compressive ratio is 10,compared with clustering without CS,SPT without CS,SPT with hybrid CS,and clustering with hybrid CS,the reduction ratio of traffic of the method respectively are 65%,55%,40%and 10%.
作者
李玉龙
刘任任
赵津锋
臧浪
曹斌
LI Yulong;LIU Renren;ZHAO Jinfeng;ZANG Lang;CAO Bin(College of Information Engineering,Xiangtan University,Xiangtan,Hunan 411105,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2018年第10期129-135,共7页
Computer Engineering
关键词
分簇感知网络
压缩感知
动态规划
数据收集
最小生成树
簇头选取
clustering sensing network
Compressive Sensing(CS)
dynamic programming
data collection
Minimum Spanning Tree(MST)
Cluster Head(CH)selection