摘要
为了研究线性核Toader平均Mr(a,b)在R++2上的Schur凸性和Schur几何凸性,利用控制不等式的相关理论得到结论:当r≥1时,Mr(a,b)在R++2上是Schur凸函数;当r≤1时,Mr(a,b)在R++2上是Schur凹函数;当r≥1/2时,Mr(a,b)在R++2上是Schur几何凸函数.最后,依据Mr(a,b)的Schur凸性和Schur几何凸性建立了新的不等式.
In order to research the Schur-convexity of Toader’s mean Mr(a,b) with linear kernel on R++2,using the majorization theory we obtain that Mr(a,b) is Schur-convex function on R++2 when r≥1,is Schur-concave function on R++2 when r≤1,and is Schur-geometric convex function on R++2 when r≥(1/2).Finally,new inequalities are established on the base of the Schur-convexity and Schur-geometric concavity of Mr(a,b).
出处
《数学的实践与认识》
CSCD
北大核心
2014年第20期264-268,共5页
Mathematics in Practice and Theory