期刊文献+

基于MEMS惯性器件的行人室内定位系统 被引量:11

An Indoor Pedestrian Positioning System Based on MEMS Inertial Devices
下载PDF
导出
摘要 基于惯性传感器的行人航位推算系统不需要预先安装任何基础设备,能自主运行、实现实时行人定位。设计的硬件平台将低成本、低功耗、小尺寸的MEMS惯性传感器与GPS接收机相结合。在室内、城市峡谷等GPS信号不稳定的环境,惯性传感器根据前一GPS定点推算行人行走的相对位置。行人所处位置高度由气压计测量,与平面位置相结合实现三维定位。简单而有效的跨步探测及步长估计算法降低对微处理器的计算及存储要求。利用互补滤波器融合加速度计、陀螺仪、数字罗盘数据,降低方位误差、提高定位精度。室内行人行走测试实验表明:定位误差低于总行走距离的3%。验证了系统的准确性和可靠性,满足行人定位要求。 The pedestrian dead reckoning system based on the inertial sensors can autonomously operate and achieve the real-time pedestrian positioning,which does not need any pre-installed infrastructures.The designed hardware platform integrates the low-cost,low-power,small-size MEMS inertial sensors and GPS receiver.When the GPS signal is unavailable,such as indoor and urban canyons environments,the inertial sensors calculate the relative position of pedestrians from the previous GPS fixed point.The height information is measured by the barometer,which is combined with the plane position to realize the three-dimensional positioning.A simple but effective algorithm for stride detection and step length estimation is designed to reduce the calculation and storage requirements to the microprocessor.The proposed complementary filter fuses the accelerometer,gyroscope and digital compass data to reduce azimuth error and improve positioning accuracy.The indoor pedestrian walking test experiments show that the positioning error is less than 3% of the total traveled distance.The accuracy and reliability of the system is verified,which meet the requirements of the pedestrian position.
出处 《计算机测量与控制》 北大核心 2014年第11期3761-3763,共3页 Computer Measurement &Control
基金 辽宁省教育厅项目(L2013159)
关键词 行人航位推算 惯性传感器 互补滤波器 室内导航 pedestrian dead reckoning inertial sensor complementary filter indoor navigation
  • 相关文献

参考文献12

  • 1Thomas J.Gallagher,Binghao Li,Andrew G.Dempster,Chris Rizos.A sector-based campus-wide indoor positioning system[A].2010 International Conference on Indoor Positioning and Indoor Navigation (IPIN)[C].Zürich,Switzerland,2010:15-17. 被引量:1
  • 2Lei F,Panos J.Antsaklis,Luis A.Montestruque,et al.Design of a wireless assisted pedestrian dead reckoning system-the NavMote experience[J].IEEE Transactions on Instrumentation and Measurement,2005,4 (6):2342-2358. 被引量:1
  • 3殷红,郭杭,邓晓华.基于foot-mounted的IMU室内行人航位推算研究[J].测绘科学,2014,39(1):20-23. 被引量:15
  • 4Abdulrahim K,Hide C,Moore T,et al.Aiding MEMS IMU with building heading for indoor pedestrian navigation[A].Ubiquitous Positioning Indoor Navigation and Location Based Service[C].Kirkkonummi,2010:1-6. 被引量:1
  • 5胡伟娅,陆佳亮,伍民友.基于RSSI与惯性测量的室内定位系统[J].计算机工程,2013,39(11):91-95. 被引量:10
  • 6Rantakokko J,Rydell Joakim,Stroback Peter.Accurate and reliable soldier and first responder indoor positioning:mulitsensor systems and cooperative localization[J].IEEE Wireless Communications,2011,4:10-18. 被引量:1
  • 7Kroger T,Chen Y,Pei L,et al.Heidi Kuusniemi,Ruizhi Chen,Wei Chen.J A method of pedestrian dead reckoning using speed recognition[A].Ubiquitous Positioning Indoor Navigation and Location Based Service[C].Kirkkonummi,2010:7-14. 被引量:1
  • 8Huang C L,Liao Z K,Zhao L.Synergism of INS and PDR in self-contained pedestrian tracking with a miniature sensor module[J].IEEE Sensors Journal,2010,10 (8):1349-1359. 被引量:1
  • 9Sun Z K,Mao X C,Tian W F,et al.Activity classification and dead reckoning for pedestrian navigation with wearable sensors[J].Measurement Science and Techology,2009,20:1-10. 被引量:1
  • 10Kim J W,Jang H J,Hwang D H,et al.A step,stride and heading determination for the pedestrian navigation system[J].Journal of Global Positioning Systems,2004,3:273-279. 被引量:1

二级参考文献104

  • 1尹康银,宋自林,徐平.Ontology mapping based on hidden Markov model[J].Journal of Southeast University(English Edition),2007,23(3):389-393. 被引量:2
  • 2Thurston J. GALILEO, GLONASS and NAVSTAR A Report on GPS for GIS People[C]//Proc. of GISCafe’02[S. 1.]: IEEE Press, 2002. 被引量:1
  • 3Gu Y, Lo A, Niemegeers I. A Survey of Indoor Positioning Systems for Wireless Personal Networks[J]. IEEE Com- munications Surveys & Tutorials, 2009, 11(1): 13-32. 被引量:1
  • 4Bekkali A. RFID Indoor Positioning Based on Probabilistic RFID Map and Kalman Filtering[C]//Proc. of WiMOB’07[S. 1.]: IEEE Press, 2007. 被引量:1
  • 5Bahl P, Padmanabhan V. RADAR: an In-building RF-based User Location and Tracking System[C]//Proc. of IEEE INFOCOM’00. Tel Aviv, Israel: IEEE Press, 2000: 775-784. 被引量:1
  • 6King T, Kopf S, Haenselmann T. COMPASS: A Probabilistic Indoor Positioning System Based on 802.11 and Digital Compasses[C]//Proc. of the 1st ACM Int’l Workshop on WiNTECH’06. Los Angeles, USA: [s. n.], 2006. 被引量:1
  • 7Collin J, Mezentsev O, Lachapelle G, et al. Indoor Positioning System Using Accelerometry and High Accuracy Heading Sensors[C]//Proc. of GPS/GNSS Conference. Portland, USA: [s. n.], 2003. 被引量:1
  • 8Cliff C, Muller H. Personal Position Measurement Using Dead Reckoning[C]//Proc. of the 7th Int’l Symposium on Wearable Computers. New York, USA: [s. n.], 2003: 166-173. 被引量:1
  • 9Beauregard S, Haas H. Pedestrian Dead Reckoning: A Basis for Personal Positioning[C]//Proc. of the 3rd Workshop on Positioning, Navigation and Communication. Hannover, Germany: [s. n.], 2006: 27-35. 被引量:1
  • 10Jin Y, Motani M, Soh W, et al. SparseTrack: Enhancing Indoor Pedestrian Tracking with Sparse Infrastructure Support[C]// Proc. of IEEE INFOCOM’10. San Diego, USA: [s. n.], 2010: 1-9. 被引量:1

共引文献24

同被引文献81

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部