期刊文献+

基于先验形状的混杂活动轮廓模型及其在图像分割中的应用 被引量:3

Shape Prior Based Hybrid Active Contour Model and its Applications in Image Segmentation
下载PDF
导出
摘要 提出了一种新颖的基于先验形状学习的混杂活动轮廓(SHAC)模型,该模型采用变分水平集方法,融合自适应区域信息与边界信息,运用主成分分析的方法从给定的含有目标物体轮廓的训练集学习得到最佳形状信息,并将其作为先验形状。将自适应区域特征和轮廓特征作为局部信息,先验形状作为全局信息,在迭代过程中结合全局和局部信息实现对演化曲线的形变进行指导和约束,达到分割目标物体的目的。通过定量和定性地分析低对比度的乳腺核磁共振图像中的乳腺轮廓的分割,以及具有复杂背景的自然图像中感兴趣区域的分割结果,验证了SHAC模型比传统活动轮廓模型具有更高的准确率,表明了该模型不仅提高了图像分割中对弱边界的识别度,减弱了非目标轮廓的干扰,而且具有良好的抗噪能力。 In this paper,a new Shape-prior based Hybrid Active Contour(SHAC)model was presented for segmentation.By using level set method,this model combines boundary and adaptive region information together and learns an optimal prior shape from the training set.It takes the boundary and adaptive region feature as local information while prior shape as global information.The model combines global and local information in the process of iteration to guide the evolution of deformative curve and achieve the goal of segmenting target objects.Experiments show that compared with GAC,C-V,and RSF models,SHAC model displays its advantages not only in the segmentation of image strong noise and weak boundary,but also in the image with low contrast resolution,complicated background and contributes improved accuracy.
作者 曹冬梅 徐军
出处 《计算机科学》 CSCD 北大核心 2014年第11期301-305,316,共6页 Computer Science
基金 国家自然科学基金(61273259 61005027 61272223)资助
关键词 活动轮廓 先验形状学习 水平集方法 图像分割 Active contour Shape prior Level set method Image segmentation
  • 相关文献

参考文献19

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: Active contour mo dels[J]. International journal of computer vision, 1988, 1 (4): 321-331. 被引量:1
  • 2Chuang C H, Chao Y L, Li Z P. Moving object segmentation and tracking using active contour and color classification models[C]// 2010 IEEE International Symposium on Multimedia (ISM). IEEE, 2010 : 73-80. 被引量:1
  • 3Paragios N, Mellina-Gottardo O, Ramesh V. Gradient vector flow fast geometric active contours[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 ( 3 ) : 402-407. 被引量:1
  • 4Caselles V, Kimmel R, Sapiro G. Geodesic active eontours[J]. International journal of computer vision,1997,22(1) :61-79. 被引量:1
  • 5Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions on Image Processing, 2001,10(2) : 266-277. 被引量:1
  • 6Cremers D, Rousson M, Deriche R. A review of statistical ap- proaches to level set segmentation: integrating color, texture, motion and shape[J]. International journal of computer vision, 2007,72(2) : 195-215. 被引量:1
  • 7Zhang K,Zhang l.,Song H,et al. Active contours with selective local or global segmentation: A new formulation and level set met hod[J]. Image and Vision Computing, 2010,28(4 ) : 668 -676. 被引量:1
  • 8Liu Z,Zhang L,Ren H,et al. A robust region-based active con- tour model with point classification for ultrasound breast tumor segmentation[C]//SPIE Medical Imaging. International Society for Optics and Photonics,2013,8670. 被引量:1
  • 9Mumford D, Shah ,1. Optimal approximations by piecewise smooth functions and associated variationalproblems[J]. Com- munications on pure and applied mathematics, 1989,42 (5) : 577- 685. 被引量:1
  • 10I.i C. Kao C Y.Gore J C, et al. Minimization of region-scalable fitting energy for image segmentation[J]./EEE Transactions on Image Processing, 2008,17(10) : 1940-1949. 被引量:1

二级参考文献12

  • 1王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社,2009. 被引量:3
  • 2Kass M,Witkin A, Terzopoulos D. Snakes active contour models [J]. International Journal of Computer Vision, 1988, 1 (4) : 321- 332. 被引量:1
  • 3Bresson X, Esedoglu S. Fast Global Minimization of the Active Contour/Snake Model[J]. Math Imaging Vision, 2007,28: 151- 167. 被引量:1
  • 4Vese L, Chan T. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. Interna- tional Journal of Computer Vision, 2002,50 (3) : 271-293. 被引量:1
  • 5Rousson M, Paragios N. Prior Knowledge, Level Set Represen- tations & Visual Grouping[J]. International Journal of Computer Vision, 2008,76 (3) : 231-243. 被引量:1
  • 6Caselles V, Kimmel R, Sapiro G. Geodesic Active Contours[J]. International Journal of Computer Vision, 1997,22 ; 61-79. 被引量:1
  • 7Tao Wen-bing, Tai Xue-cheng. Multiple Piecewise Constant with Geodesic Active Contours(MPC-GAC) Framework for Interac- tive Image Segmentation using Graph Cuts Optimization[J]. Ima- ge and Vision Computing, 2011,29 (8) : 499-508. 被引量:1
  • 8Shotton J, Blake A, Cipolla tL Contour-based Lemming for Ob- jeet Deteetion[J]. ICCV, 2005 : 1 : 503-510. 被引量:1
  • 9Gavrila D M. Multi-feature Hierarchical Template Matching u- sing Distance Transforms[J]. ICPR98,1998,1 : 439-444. 被引量:1
  • 10Cremers D, Osher S J. Kernel Density Estimation and Intrinsic Alignment for Shape Priors in Level Set Segmentation[J]. Inter- national Journal of Computer Vision, 2006,69 (3) : 335-351. 被引量:1

共引文献3

同被引文献28

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部