期刊文献+

基于中智模糊关联规则生成的大数据挖掘分析算法 被引量:7

BIG DATA MINING AND ANALYSIS ALGORITHM BASED ON NEUTROSOPHIC FUZZY ASSOCIATION RULE GENERATION
下载PDF
导出
摘要 关联规则挖掘作为一种大数据挖掘方法,被用于确定不同项目间存在的内在联系,并以大于某一阈值作为评判不同项间存在关联的依据。传统关联规则挖掘方法仅能建立不同项间的布尔型关联规则,存在硬化数据“尖锐边界”问题导致关联规则挖掘性能下降的缺点。为克服经典数据挖掘算法的这一缺陷,提出一种新型中智关联规则挖掘算法。基于专家知识对语言学术语进行量化预处理,得到不同指标的量化数据资料库;基于关联规则支持度定义计算不同指标项集合的支持度;通过考虑不同项间的隶属度、不确定度和非隶属度函数生成关联规则。将该中智挖掘算法与模糊挖掘算法进行对比,结果表明,该算法能够增加生成关联规则数量,有助于提高数据挖掘的准确性。 Association rule mining,as a big data mining method,is used to determine the intrinsic relationship between different items,and we use a threshold greater than a certain value as the basis for judging the correlation between different items.The traditional Boolean association rule mining method can only generate the binary rules among different items.However,the problem of hardening data “sharp boundary” leads to the performance degradation of association rules mining.To overcome this drawback,we proposed a neutrosophic association rule mining algorithm.Based on expert knowledge,the linguistic terms were preprocessed into the quantitative values to obtain quantitative databases of different indicators.The support degree of different index item sets was calculated based on the definition of association rule support degree.Furthermore,the association rules were generated by considering the membership,indeterminacy,and non-membership functions of different items.We compared the proposed algorithm with the fuzzy mining algorithm.The results show that our proposed can increase the number of generated association rules and help to improve the accuracy of data mining.
作者 梁凡 赵丽 Liang Fan;Zhao Li(College of Information Engineering,Nanning College for Vocational Technology,Nanning 530008,Guangxi,China;School of Software,Shanxi University,Taiyuan 030013,Shanxi,China)
出处 《计算机应用与软件》 北大核心 2019年第10期285-292,298,共9页 Computer Applications and Software
基金 2019年度广西高校中青年教师科研基础能力提升项目(2019KY1232)
关键词 大数据 数据挖掘 中智关联规则生成 模糊化理论 隶属度函数 Big data Data mining Neutrosophic association rule generation Fuzzy theory Membership function
  • 相关文献

参考文献9

二级参考文献81

  • 1柴立和.多尺度科学的研究进展[J].化学进展,2005,17(2):186-191. 被引量:24
  • 2徐宝祥,叶培华.知识表示的方法研究[J].情报科学,2007,25(5):690-694. 被引量:53
  • 3孙庆先,李茂堂,路京选,郭达志,方涛.地理空间数据的尺度问题及其研究进展[J].地理与地理信息科学,2007,23(4):53-56. 被引量:25
  • 4CHENG Heng-da, JIANG Xi-hua, SUN Ying, et al. Color image segmentation: advances and prospects [ J ]. Pattern Recognition, 2001,34(12) :2259-2281. 被引量:1
  • 5YANG Xiao-chun, ZHAO Wei-dong, CHEN Yu-fei, et al. Image segmentation with a fuzzy clustering algorithm based on Ant-Tree[ J ]. Signal Processing ,2008,88(10) :2453-2462. 被引量:1
  • 6CHEN Qiang, SUN Quan-sen,XlA De-shen. Homogeneity similarity based image denoising [ J ]. Pattern Recognition, 2010,43 ( 12 ) : 4089- 4100. 被引量:1
  • 7弗罗仁汀·司马仁迭齐.中智学:中智逻辑,中智集合论,中智概率论[M].刘峰,译中国台北:希泉出版社,2003. 被引量:1
  • 8ZADEH L A. Probability theory and fuzzy logic are complementary rather than competitive [ J ]. Technometrics, 1995,37 ( 3 ) :271-276. 被引量:1
  • 9CHUNG Fu-lai, DENG Zhao-hong, WANG Shi-tong. An adaptive fuzzy-inference-rule-based flexible model for automatic elastic image registration [ J ]. IEEE Trans on Fuzzy Systems, 2009,17 ( 5 ) : 995-1010. 被引量:1
  • 10CHENG Heng-da, GUO Yan-hui. A new neutrosophic approach to image thresholding[ J ]. New Mathematics and Natural Computation ,2008,4( 3 ) :291-308. 被引量:1

共引文献56

同被引文献88

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部