摘要
Methoprene (an analogue of juvenile hormone) application and feeding on a protein diet is known to enhance male melon fly, Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), mating success. In this study, we investigated the effect of these treatments on male B. cucurbitae's ability to inhibit female remating. While 14-d-old females were fed on protein diet, 6-d-old males were exposed to one of the following treatments: (i) topical application of methoprene and fed on a protein diet; (ii) no methoprene but fed on a protein diet; (iii) methoprene and sugar-fed only; and (iv) sugar-fed, 14-d-old males acted as controls. Treatments had no effect on a male's ability to depress the female remating receptivity in comparison to the control. Females mated with protein-deprived males showed higher remating receptivity than females first mated with protein-fed males. Methoprene and protein diet interaction had a positive effect on male mating success during the first and second mating of females. Significantly more females first mated with sugar-fed males remated with protein-fed males and females first mated with methoprene treated and protein-fed males were more likely to remate with similarly treated males. Females mating latency (time to start mating) was significantly shorter with protein-fed males, and mating duration was significantly longer with protein-fed males compared with protein-deprived males. These results are discussed in the context of methoprene and/or dietary protein as prerelease treatment of sterile males in area-wide control of melon fly integrating the sterile insect technique (SIT).
Methoprene (an analogue of juvenile hormone) application and feeding on a protein diet is known to enhance male melon fly, Bactrocera cucurbitae Coquillett (Diptera: Tephritidae), mating success. In this study, we investigated the effect of these treatments on male B. cucurbitae's ability to inhibit female remating. While 14-d-old females were fed on protein diet, 6-d-old males were exposed to one of the following treatments: (i) topical application of methoprene and fed on a protein diet; (ii) no methoprene but fed on a protein diet; (iii) methoprene and sugar-fed only; and (iv) sugar-fed, 14-d-old males acted as controls. Treatments had no effect on a male's ability to depress the female remating receptivity in comparison to the control. Females mated with protein-deprived males showed higher remating receptivity than females first mated with protein-fed males. Methoprene and protein diet interaction had a positive effect on male mating success during the first and second mating of females. Significantly more females first mated with sugar-fed males remated with protein-fed males and females first mated with methoprene treated and protein-fed males were more likely to remate with similarly treated males. Females mating latency (time to start mating) was significantly shorter with protein-fed males, and mating duration was significantly longer with protein-fed males compared with protein-deprived males. These results are discussed in the context of methoprene and/or dietary protein as prerelease treatment of sterile males in area-wide control of melon fly integrating the sterile insect technique (SIT).