摘要
针对多个圆锥曲面管道,提出了利用2片toric曲面构造管道过渡曲面的方法.首先根据管道的几何特征确定多边形参数域,对参数域进行正则分解;然后借助toric曲面的退化理论与有理Bézier曲面间的几何拼接条件,给出过渡曲面G1连续时toric曲面控制顶点所需满足的几何条件.文中方法不需求解方程组,具有一定的灵活性.最后通过具体实例证明了该方法的有效性.
For the pipes modelled by conical surfaces, a method to construct the blending surface consisting of two pieces of toric patches is presented. The parametric domains of toric patches are subdivided into regular decompositions after they are determined by the geometry of pipes. Based on the degeneration of toric patches and the geometric continuity condition between rational Bezier patches, the G1 continuity condition for control points of the blending surface are derived. The presented method is simple, flexible, and without solving any system of equations. Experimental results are presented that verify the effectiveness of the method.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2014年第10期1639-1645,共7页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(11271060
11290143)
民用飞机专项项目(MJ-F-2012-04)
辽宁省高等学校优秀人才支持计划(LJQ2014010)
中央高校基本科研业务费专项基金(DUT14YQ111)