期刊文献+

压电陶瓷定位系统电容传感器容错控制 被引量:3

Fault tolerance control of capacitance transducer in piezoelectric ceramic positioning system
下载PDF
导出
摘要 针对压电陶瓷定位系统中电容传感器故障对定位精度的影响,对使用扩展卡尔曼滤波(EKF)进行容错控制的方法进行了研究。以传感器采样电路故障和掉电故障为对象,对三阶轨迹规划算法下电容传感器的EKF滤波公式进行了分析,提出以离散化迭代计算的EKF代替传统的将非线性系统线性化的方法。在压电陶瓷定位系统实验平台上,使用激光干涉仪作为测量基准,在传感器采样电路故障和掉电故障的情况下,实现了500μm行程,绝对精度小于3.5μm,误差小于0.7%的定位控制。结果表明,基于EKF的电容传感器容错控制可以有效减小传感器故障引起的控制误差,增加压电陶瓷定位系统的鲁棒性。 As the failure of capacitance transducer has a big impact on tracking accuracy of the piezoelectric ceramic positioning system,the methodology of using extended Kalman filter(EKF)to implement the fault tolerance control is investigated in this paper. Aiming at the sampling circuit failure and the power failure of the transducer,an EKF filtering formula of capacitance transducer under three-order trajectory planning algorithm is analysed. The method that the discrete iterative EKF algorithm is taken to replace the traditional method is introduced. Positioning control experiment is performed with the benchmark of the laser interferometer. The results indicate that the proposed method can achieve 0.7% maximum tracking errors,with the deviation of ±3.5 μm,in a stroke of 500 μm. The experimental results indicate that the fault tolerance control method based on EKF can the control error caused by transducer fault and increase the robustness of the piezoelectric ceramic positioning system.
出处 《现代电子技术》 2014年第21期152-155,共4页 Modern Electronics Technique
基金 国家重大科技专项02专题资助项目(2009ZX02205)
关键词 压电陶瓷 电容传感器 扩展卡尔曼滤波(EKF) 容错控制 piezoelectric ceramic capacitance transducer extended Kalman filter fault tolerance control
  • 相关文献

参考文献12

二级参考文献94

  • 1孙立宁,董为,杜志江.基于大行程柔性铰链的并联机器人刚度分析[J].机械工程学报,2005,41(8):90-95. 被引量:18
  • 2孙立宁,董为,杜志江.基于几何非线性方法的大行程柔性并联机器人位置解[J].机械工程学报,2005,41(10):71-74. 被引量:4
  • 3KALMAN R E. A new approach to linear filtering and prediction problems[J]. Transactions of the ASME, Journal of Basic Engineer- ing, 1960, 82(Series D): 35 - 45. 被引量:1
  • 4JWO D J, CHO T S. A practical note on evaluating Kalman filter performance optimality and degradation[J]. Applied Mathematics and Computation, 2007, 193(2): 482 - 505. 被引量:1
  • 5KIM K H, JEE G I, PARK C G, et al. The stability analysis of the adaptive fading extended Kalman filter using the innovation covari- ance[J]. International Journal of Control, Automation, and Systems, 2009, 7(1): 49 - 56. 被引量:1
  • 6JWO D J, WANG S H. Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation[J]. IEEE Sensors Journal, 2007, 7(5): 778 - 789. 被引量:1
  • 7SARKKA S, NUMMENMAA A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations[J]. IEEE Transac- tions on Automatic Control, 2009, 54(3): 596 - 600. 被引量:1
  • 8DE SOUZA C E, BARBOSA K A, FU M. Robust filtering for un- certain linear discrete-time descriptor systems[J]. Automatica, 2008, 44(3): 792 - 798. 被引量:1
  • 9KAI X, WEI C, LIU L. Robust extended Kalman filtering for non- linear systems with stochastic uncertainties[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2010, 40(2): 399 - 405. 被引量:1
  • 10XU H, MANNOR S. A Kalman filter design based on the perfor- mance/robustness tradeoff[J]. IEEE Transactions on Automatic Con- trol, 2009, 54(5): 1171 - 1175. 被引量:1

共引文献80

同被引文献23

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部