期刊文献+

蜂窝状铝合金高速加工刀具粘附行为及其作用机理研究 被引量:7

Adhesion Behavior and Mechanisms in High Speed Machining of Cellular Aluminum Alloy
下载PDF
导出
摘要 通过高速铣削试验方法对蜂窝状铝合金高速铣削刀具的粘附行为及粘附机理进行了研究。结果表明,由于初期铝屑粘附在刀具表面上,致使后期切削加工中的铝切屑与刀具表面的化学活性近似,使得铝屑进一步强化粘附在刀具表面,且由于高速加工中产生的高温和高压作用,使得粘附层材料发生变形。后续切屑划擦初期的粘附层,使粘附层出现变形和犁沟现象,加剧刀具与工件间的摩擦状态。同时,铝合金高速加工中高的塑性变形特征是发生粘附磨损的另一重要作用机制。此外,切屑表层材料受到剧烈剪切变形引起表面积增加,使切削形成的金属表面膜破裂,在与刀具表面紧密接触的近乎为真空环境下刀具不断切削新的表面,活性非常高,极易发生摩擦化学反应,较高摩擦化学反应形成的表面厚度达到临界值时将发生磨损,导致刀具粘附磨损加剧。 This paper analysis the adhesion behavior and adhesion mechanism in high speed milling honeycomb alumi- num alloy by experiment. Results show that the initial aluminum scraps adhesion make the tool surface approximation for the same metal with the workpiece, making aluminum scraps adhesion on tool surface intensified. Because of the high tem- perature and high pressure in high speed machining, deformation appear on the adhesive layer. Meanwhile, the initial ad- hesive layer is scratched by subsequent chip, the adhesion layer deformed and further aggravate friction happened between the tool and the chip or workpiece. Additionally, high plasticity characteristic is another important mechanism in the forma- tion of adhesive wear in high speed machining aluminum alloy. Meanwhile, the superficial area of the chip increase caused by severe shear deformation, which rupture the initial stages of cutting metal surface, new surface is cut in close contact with the tool surface near to vacuum conditions, and the atoms on the new surface layer outside keep an unsaturated bond stress state, the surface is quite lively, friction wear surface produced. When the friction chemical reaction reached a cer- tain critical value, tool adhesion wear appear.
出处 《工具技术》 2014年第10期7-11,共5页 Tool Engineering
基金 国家自然科学基金(51205219) 机械制造系统工程国家重点实验室开放基金(sklms2012002) 中国博士后科学基金(2013M532034)
关键词 蜂窝状铝合金 高速加工 粘附行为 磨损机制 cellular aluminium alloy high speed cutting adhesion behaviors wear mechanisms
  • 相关文献

参考文献8

  • 1F Bastawros, H Bart Smith, A G Evans. Experimental a- nalysis of deformation mechanisms in a closed - cell alumi- num alloy foam[ J]. Journal of the Mechanics and Physics of Solids,2000,48 ( 2 ) : 301 - 322. 被引量:1
  • 2唐志涛,刘战强,艾兴.高速铣削加工铝合金表面残余应力研究[J].中国机械工程,2008,19(6):699-703. 被引量:27
  • 3董辉跃,柯映林,成群林.铝合金三维铣削加工的有限元模拟与分析[J].浙江大学学报(工学版),2006,40(5):759-762. 被引量:28
  • 4付秀丽,艾兴,万熠,张松.FLOW STRESS MODELING FOR AERONAUTICAL ALUMINUM ALLOY 7050-T7451 IN HIGH-SPEED CUTTING[J].Transactions of Nanjing University of Aeronautics and Astronautics,2007,24(2):139-144. 被引量:15
  • 5Shatla M, Kerk C, Altan T. Process modeling in machi- ning. Part II: Validation and applications of the determined flow stress data[ J]. International Journal of Machine Tools & Manufacture, 2001,41 ( 11 ) : 1659 - 1680. 被引量:1
  • 6Gomez - Parra, et al. Analysis of the evolution of the built -up edge and built -up layer formation mechanisms in the dry turning of aeronautical aluminium alloys [ J ]. Wear (2013), http://dx, doi. org/10. 1016/j. wear. 2012. 12.O01i. 被引量:1
  • 7G Kappmeyer, C Hubig, M Hardy, et al. Modern machining of advanced aerospace alloys--enabler for quality and per- formance [J]. CIRP, 2012, 1:28-43. 被引量:1
  • 8N Fang, P Dewhurst. Slip - line modeling of built - up edge formation in machining[ J]. International Journal of Mechan- ical Sciences, 2005, 47:1079 - 1098. 被引量:1

二级参考文献14

  • 1米谷茂.残余应力的产生和对策[M].北京:机械工业出版社,1983.. 被引量:73
  • 2NG E-G, SZABLEWSKI D, DUMITRESCU M, et al.High speed face milling of a aluminum silicon alloy casting [J]. Annals of the CIRP, 2004, 53(1) : 69 - 72. 被引量:1
  • 3YANG Xiao-ping, LIU C R. A new stress-based model of friction behavior in machining and its significant impact on residual stresses computed by finite element method [J]. International Journal of Mechanical Sciences, 2002,44(4) : 703 - 723. 被引量:1
  • 4SHATLA M, KERK C, ALTAN T. Process modeling in machining, part 2: validation and applications of the determined flow stress data [J]. International Journal of Machine Tools & Manufacture, 2001,41 (11) :1659-1680. 被引量:1
  • 5OZEL T, ALTAN T. Process simulation using finite element method-prediction of cutting forces, tool stresses and temperatures in high-speed flat end milling [J]. International Journal of Machine Tools & Manufacture,2000, 40(5) : 713 - 738. 被引量:1
  • 6OZEL T, ALTAN T. Determination of workpiece flow stress and friction at chip-tool contact for high-speed cutting [J]. International Journal of Machine Tools & Manufacture, 2000, 40(1) :133 - 152. 被引量:1
  • 7BAKER M. An investigation of the chip segmentation process using finite elements [J]. Technishe Mechanik,2003, 23(1):1-9. 被引量:1
  • 8LIN Zone-ching, YANG Yuung-der. Three-dimensional cutting process analysis with different cutting velocities[J]. Journal of Materials Processing Technology, 1997,70(1) :22 - 33. 被引量:1
  • 9FILOM D G, KOMANDURI R, LEE M. High speed machining of metals [J]. Annals Review of Material Science, 1984, 14:231-278. 被引量:1
  • 10ALBERT J S, HENRY T Y. Experiment and finite element predictions of residual stress due to orthogonal metal cutting [J]. International Jouranl for Numerical Methods in Engineering,1993, 36(9) : 1487-1507. 被引量:1

共引文献67

同被引文献49

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部