期刊文献+

基于GMM和神经网络的辐射源识别方法 被引量:2

The Methods Based on the GMM and Neural Network for Recognition of Emitters
下载PDF
导出
摘要 针对基于截获雷达脉冲特征参数的辐射源识别问题,通过建立一个高斯混合模型(GMM),采用最大化期望(EM)方法对模型参数进行训练,构建了一个输入为截获雷达脉冲特征参数,输出为雷达辐射源类型的分类器。同时,为实现对分类识别性能对比,进一步提出基于神经网络方法构建雷达辐射源类型分类器。仿真试验结果表明,基于GMM和神经网络构建的两种分类器均能实现对雷达辐射源的在线识别,且当用于训练的样本比例不低于10%时,均能获得90%以上的分类正确率。 Considering the recognition of emitters based on the parameters of interception radar pulse,a Gaussian mixture model(GMM)is built and trained by the expectation maximization(EM)method,so a clas-sifier is constructed whose input is the interception radar pulses and whose output is radar emitter types. Then,another classifier based on the neural network method is also compared with the proposed GMM-based method.The results of extensive simulations demonstrate that the proposed classifiers based on the GMM and neural network can achieve the on-line recognition of radar emitters,and the accuracy is more than 90%when the training sample ratio is not less than 10%.
出处 《雷达科学与技术》 2014年第5期482-486,共5页 Radar Science and Technology
关键词 高斯混合模型 神经网络 雷达脉冲 辐射源识别 Gaussian mixture model(GMM) neural network radar pulse emitter recognition
  • 相关文献

参考文献10

  • 1赵国庆主编..雷达对抗原理[M].西安:西安电子科技大学出版社,1999:221.
  • 2赵贵喜,王岩,于冰,季念坤.基于人工鱼群聚类的雷达信号分选算法[J].雷达科学与技术,2013,11(4):375-378. 被引量:5
  • 3管振辉.一种ESM系统信号处理的设计方法[J].舰船电子对抗,2013,36(2):47-51. 被引量:2
  • 4王雪松等编著..现代雷达电子战系统建模与仿真[M].北京:电子工业出版社,2010:456.
  • 5RADU M,RINA D. AND/OR Branch-and-BoundSearch for Combinatorial Optimization in GraphicalModels[J]. Artificial Intelligence,2009,173(16):1457-1491. 被引量:1
  • 6阎平凡,张长水编著..人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000:435.
  • 7赵悦著..概率图模型学习理论及其应用[M].北京:清华大学出版社,2012:157.
  • 8余瑞艳.基于期望最大算法的高斯混合模型参数估计[J].长江大学学报(自科版)(上旬),2012,9(11):12-14. 被引量:2
  • 9MAIZURA M, JOE H. Comparing the Online Learn-ing Capabilities of Gaussian ARTMAP and Fuzzy AR-TMAP for Building Energy Management Systems[J].Expert Systems with Applications, 2013,40(15):6007-6018. 被引量:1
  • 10EMINA A,ABDULHAMIT S. Usage of SimplifiedFuzzy ARTMAP for Improvement of ClassificationPerformances[J], Southeast Europe Journal of SoftComputing, 2013,2(2) :93-97. 被引量:1

二级参考文献17

  • 1刘文.空间变化运动模糊图像的复原算法研究[D].武汉:武汉理工大学,2011. 被引量:2
  • 2Levin A. Blind motion deblurring using image statistics [C] //Proceedings of Advances in Neural Information Processing Systems,2006, 19: 841-848. 被引量:1
  • 3Levin A, Fergus R, Freeman W T. Image and depth from a conventional camera with a coded aperture [J] . ACM Transactions onGraphics, 2007,26 (6): 70-77. 被引量:1
  • 4Fergus R, Singh B, Hertzmann A, et al. Removing camera shake from a single photograph [J] . ACM Transactions on Graphics, 2006,25 (3): 787-794. 被引量:1
  • 5Hammond D K, Simoncelli E P. Image denoising with an orientation-adaptive Gaussian scale mixture model [C] //Proceedings of IEEEInternational Conference on Image Processing, Atlanta: IEEE Computer Society, 2006: 1433-1436. 被引量:1
  • 6Permuter H,Francos J . Jermyn I. A study of Gaussian mixture models of color and texture features for image classification andsegmentation [J]. Pattern Recognition, 2006,39 (4) : 695-706. 被引量:1
  • 7Mitchell T M. Machine learning [M] . New York: The McGraw-Hill Company, 2002. 被引量:1
  • 8刘白,周永权.一种基于人工鱼群的混合聚类算法[J].计算机工程与应用,2008,44(18):136-138. 被引量:5
  • 9赵贵喜,骆鲁秦,陈彬.基于蚁群算法的K-Means聚类雷达信号分选算法[J].雷达科学与技术,2009,7(2):142-146. 被引量:17
  • 10曲良东,何登旭.一种混沌人工鱼群优化算法[J].计算机工程与应用,2010,46(22):40-42. 被引量:27

共引文献6

同被引文献22

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部