期刊文献+

一种基于偏离的局部离群点检测算法 被引量:13

Deviation-based local outlier detection algorithm
下载PDF
导出
摘要 针对现有的局部离群点检测算法对数据对象不加分区,致使计算复杂度高的问题,提出了一种基于偏离的局部离群点检测算法。该算法首先对数据集进行分区,将可能存在的局部离群点与其紧邻的簇划分到一个数据块中,然后在每个数据块内,根据离散系数刻画各个数据对象的偏离度,从而求得每个数据对象在其所属的数据块内的局部偏离因子,发现可能存在的局部离群点。理论分析和实验结果表明,该算法具有良好的识别局部离群点的能力,检测的准确率和时间效率均优于经典的LOF算法。 Aiming at the problem that existing local outlier detection algorithm does not perform partition of data objects, which results in high computational complexity, a deviation-based local outlier detection algorithm is introduced. The algorithm first divides the data set into sections, puts the potential outliers and their near clusters into a local neighbourhood, then in each local neighbourhood the local de- viation factor of each data object is described with the variation coefficient, as a result, the local variation of each data object in its be- longed data block is obtained, and the potential local outliers can more likely be found. The theoretic analysis and experiment results in- dicate that the proposed method has good local outlier recognition ability, the accuracy and time efficiency of local outlier detection are better than those of classical local outlier foitor(LOF) algorithm.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第10期2293-2298,共6页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(61272029) 李尚大集美大学学科建设基金(ZC2011018)资助项目
关键词 聚类 局部离群点检测 局部偏离因子 离散系数 clustering local outlier detection local deviation factor variation coefficient
  • 相关文献

参考文献20

二级参考文献72

  • 1孙焕良,鲍玉斌,于戈,赵法信,王大玲.一种基于划分的孤立点检测算法[J].软件学报,2006,17(5):1009-1016. 被引量:16
  • 2薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 3Breunig M M,Kriegel H P,Ng R T,et al.LOF:Identifying density-based local outliers[C]//Proc of ACM SIGMOD Conf.New York:ACM,2000:427-438. 被引量:1
  • 4Tang J,Chen Z,Fu A,et al.Enhancing effectiveness of outlier detections for low-density patterns[C]//Proc of Advances in Knowledge Discovery and Data Mining 6th Pacific Asia Conf.Berlin:Springer,2002:535-548. 被引量:1
  • 5Papadimitirou S,Kitagawa H,Gibbons P B,et al.LOCI:Fast outlier detection using the local correlation integral[C]//Proc of the 19th Int Conf on Data Engineering.Los Alamitos:IEEE Computer Society,2003:315-326. 被引量:1
  • 6Sanjay C,Pei Sun.SLOM:A new measure for local spatial outliers[J].Knowledge and Information Systems,2006,9(4):412-429. 被引量:1
  • 7Barnett V,Lewis T.Outliers in Statistical Data[M].New York:John Wiley and Sons,1994. 被引量:1
  • 8Johnson T,Kwok I,Ng R T.Fast computation of 2-dimensional depth contours[C]//Proc of the 4th Int Conf on Knowledge Discovery and Data Mining (KDD'98).New York:ACM,1998:224-228. 被引量:1
  • 9Knorr E M,Ng R T.Algorithms for mining distance-based outliers in large datasets[C]//Proc of the 24th Int Conf on Very Large Data Bases.New York:ACM,1998:392-403. 被引量:1
  • 10Ramaswamy S,Rastogi R,Shim K.Efficient algorithms for mining outliers from large data sets[C]//Proc of the 2000 ACM SIGMOD Int Conf on Management of Data.New York:ACM,2000:93-104. 被引量:1

共引文献187

同被引文献116

引证文献13

二级引证文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部