期刊文献+

关于移动网络数据流断点区优化检测仿真研究 被引量:3

A Simulation Study on the Data Flow Breakpoint of Mobile Network Is Presented
下载PDF
导出
摘要 数据流断点区检测用于挖掘识别动态数据流中的异常数据,由于移动网络数据流具有无限输入与动态变化等特征,针对现有算法存在对动态数据的聚类精度不高、离群点的处理效率较差的缺陷,难以实现移动网络环境下数据流断点区的实时高精度检测,提出了一种改进加权近邻密度的动态数据流断点区优化检测算法。上述算法利用微簇的密度来发现数据流中的离群点与簇连接,用以表示动态数据流的演化信息,为了更准确体现数据流的原始特征,在算法模型中引进了动态簇更新维护机制,并且通过改进权值邻近算法,当计算模型检测出有新对象类产生,根据聚类算法重建计算模型,这样既能准确实时发现海量数据流的变化,同时也减少了计算复杂度。通过仿真数据集进行实验分析,验证了提出的优化动态数据流断点区域检测方法在移动网络数据流离群数据检测挖掘方面的有效性,聚类检测的精度与效率具有明显优势。 Data flow breakpoint area detection is used to identify abnormal data in dynamic data flow. Because the mobile network data stream has the characteristics of infinite input and dynamic change,In view of existing algorithms,there are disadvantages of low clustering precision and poor efficiency of cluster points. It is difficult to realize real-time high precision detection of data flow breakpoints in mobile network environment.A dynamic data flow breakpoint optimization detection algorithm based on improved weighted neighbor density is proposed.The algorithm USES the density of microclusters to find outliers and cluster connections in data streams. To represent the evolution information of dynamic data flow,In order to reflect the original characteristics of data flow more accurately,The dynamic cluster update maintenance mechanism is introduced in the algorithm model. And by improving the right value proximity algorithm,When the computational model detects that a new object class is generated,Based on clustering algorithm,the model is reconstructed. So that you can find a huge amount of data flow,It also reduces computational complexity. Through the simulation data set for experimental analysis,The effectiveness of the proposed new dynamic data flow breakpoint detection method in the data detection and mining of mobile network data is verified. The accuracy and efficiency of detection have obvious advantages.
作者 吴振涛 闵俊 WU Zhen-tao;MIN Jun(School of Mathematics & Computer Science,Wuhan Polytechnic University,Wuhan Hubei 430023,China)
出处 《计算机仿真》 北大核心 2019年第1期470-474,共5页 Computer Simulation
关键词 动态数据流 断点区 微簇 改进权值邻近 聚类算法 Dynamic data flow Breakpoint area Micro cluster Improved weight proximity Clustering algorithms
  • 相关文献

参考文献3

二级参考文献56

  • 1陈卓,孟庆春,魏振钢,任丽婕,窦金凤.一种基于网格和密度凝聚点的快速聚类算法[J].哈尔滨工业大学学报,2005,37(12):1654-1657. 被引量:14
  • 2朱蔚恒,印鉴,谢益煌.基于数据流的任意形状聚类算法[J].软件学报,2006,17(3):379-387. 被引量:51
  • 3陆锋 段滢滢 袁文.LBS的数据处理技术[J].中国计算机学会通讯,2010,. 被引量:1
  • 4Guha S, Meyerson A, Mishra N, Motwani R, O'Callaghan L. Clustering data streams: theory and practice. IEEE Trans-actions on Knowledge and Data Engineering, 2003, 15(3): 515-528. 被引量:1
  • 5Han J W, Kamber M. Data Mining Concepts and Tech- niques. Beijing: China Machine Press, 2006. 196-211. 被引量:1
  • 6Ester M, Kriegel H P, Sander J, Xu X W. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Confer- ence on Knowledge Discovery and Data Mining. Portland, USA: AAAI Press, 1996. 226-231. 被引量:1
  • 7Sander J, Ester M, Kriegel H P, Xu X W. Density-based clustering in spatial databases: the algorithm GDBSCAN and its applications. Data Mining and Knowledge Discov- ery, 1998, 2(2): 169-194. 被引量:1
  • 8Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of the 4th International Conference on Knowledge Discov- ery and Data Mining. New York, USA: AAAI Press, 1998. 58-65. 被引量:1
  • 9Duan L, Xiong D Y, Lee J, Feng G. A local density based spatial clustering algorithm with noise. In: Proceedings of the 2006 IEEE International Conference on Systems, Man, and Cybernetics. Taipei, China: IEEE, 2006. 4061-4066. 被引量:1
  • 10Ester M, Kriegel H P, Sander J, Wimmer M, Xu X W. In- cremental clustering for mining in a data warehousing en- vironment. In: Proceedings of the 24th Very Large Data Bases (VLDB) Conference. San Francisco, CA, USA: Mor- gan Kaufmann Publishers Inc, 1998. 323-333. 被引量:1

共引文献58

同被引文献16

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部