摘要
多输入多输出(multi-input multi-output,MIMO)运动控制系统中,自由度耦合是影响系统运动性能的关键因素。因此,为实现运动系统高速度下纳米级定位精度和轨迹跟踪精度,需要从控制对象内部的耦合机理出发,建立耦合模型,并在此基础上建立动力学模型,实现系统内部的力学解耦。该文研究对象是一种无接触式六自由度微动台,此微动台有8个洛伦兹电机提供驱动力,且竖直方向具有重力平衡装置。基于微动台的结构模型和控制要求,建立了2类主要耦合模型:位置相关耦合和力相关耦合。其中,位置相关解耦连接控制点到质心,力相关解耦连接质心到各驱动力。最后进行了实验验证,实验结果证明了动力学模型的可行性和有效性。
The coupling in the MIMO motion control system is a key factor for the motion performance. In order to achieve nanoscale positioning and tracking accuracy with high motion velocity, the establishment of the internal coupling mechanism and dynamic modeling of the control system is needed. The study focuses on an ultra-precision contactless 6-DOF fine stage, which is driven by eight Lorentz motors and gravity compensators. According to the structure model and control requirements, two coupling models are established: position-dependency and force-dependency coupling. The first mode is to connect the control point and the center of mass, and the second mode is to connect the center of mass and the actuators. Finally, the overall decoupling mode is proved to be feasibility and effectiveness by experiments.
出处
《中国电机工程学报》
EI
CSCD
北大核心
2014年第30期5451-5457,共7页
Proceedings of the CSEE
基金
国家重点基础研究发展计划项目(973计划)(2009CB724205)~~
关键词
多输入多输出系统
动力学建模
位置相关耦合
力相关耦合
multi-input multi-output(MIMO) system
dynamic modeling
position-dependency coupling
force-dependency coupling