期刊文献+

无线传感器网络中基于代理的D-S数据融合 被引量:2

Agent based D-S data fusion in wireless sensor networks
下载PDF
导出
摘要 提出了一种无线传感器网络中基于移动代理带证据权的D-S融合算法。引入证据权对证据进行修正以降低冲突数据对融合结果的影响。采用三级D-S组合规则进行融合决策:节点级融合计算单个节点时间域融合检测概率;簇内级融合计算簇内节点间空间域融合检测概率获取局部决策结果;簇间级融合计算簇间的融合检测概率获取最终的全局决策结果。仿真结果表明,本算法能以较小的能耗代价获取准确的融合结果并有效降低冲突数据对融合结果的影响。 An agent-based D-S data fusion algorithm with evidence weights in wireless sensor net works is proposed. Evidence weights are adopted to modify the evidences before fusion in order to reduce the impact of data conflicts on fusion result. Three-level D-S combination rules are used to make fusion decision, the fusion detection probabilities of single node in time domain are calculated in the node-level fusion,and the detection probabilities of intra-cluster nodes in space domain are calculated to obtain the local decision in the intra-cluster level fusion. The fusion detection probabilities among clusters are calcu- lated to obtain the final global decision in the inter-cluster level fusion. The stimulation results show that the proposed algorithm can obtain an accurate fusion result with lower energy consumption.
出处 《计算机工程与科学》 CSCD 北大核心 2014年第10期1919-1924,共6页 Computer Engineering & Science
基金 国家自然科学基金资助项目(61373126) 江苏省自然科学基金资助项目(BK20131107)
关键词 无线传感器网络 移动代理 数据融合 D-S证据理论 证据权 wireless sensor network mobile agent data fusion D-S evidence theory evidence weight
  • 相关文献

参考文献14

  • 1Li Li,Li Wei-jia.The analysis of data fusion energy consumption in WSN[C]∥Proc of International Conference on System Science,Engineering Design and Manufacturing Informatization,2011:310-313. 被引量:1
  • 2Rogova G L,Bosse E.Information quality in information fusion[C]∥Proc of the 13th International Conference on Information Fusion,2010:1-8. 被引量:1
  • 3Pohanka P,Hrabovsky J,Fiedler M.Sensor simulation environment for sensor data fusion[C]∥Proc of the 14th International Conference on Information Fusion,2011:1-8. 被引量:1
  • 4Nicholson D.Defence applications of agent-based information fusion[J].Computer Journal,2011,54(2):263-273. 被引量:1
  • 5Rajagopalan R.A multi-objective optimization approach for data fusion in mobile agent based distributed sensor networks[C]∥Proc of 2010IEEE International Conference on Instrumentation and Measurement Technology,2010:208-212. 被引量:1
  • 6Zhou Yan,Wu Xia.Quantum neural network algorithm based on multi-agent in target fusion recognition system[C]∥Proc of 2010International Conference on Computational and Information Sciences,2010:537-540. 被引量:1
  • 7陈小平,黄鹤.Immune Feedforward Neural Network for Fault Detection[J].Tsinghua Science and Technology,2011,16(3):272-277. 被引量:4
  • 8Meghdad K,Hojat A,Mahmoud O,et al.Vibration condition monitoring of planetary gears based on decision level data fusion using dempster-shafer theory of evidence[J].Journal of Vibroengineering,2012,14(2):838-851. 被引量:1
  • 9Li Yi-bo,Wang Ning,Zhou Chang,et al.Based on D-S evidence theory of information fusion improved method[C]∥Proc of 2010International Conference on Computer Application and System Modeling,2010:V1-416-V1-419. 被引量:1
  • 10Peng Hui-ping,Cao Xiao-jun.Research conflict problem of D-S evidence and its application in multi-sensor information fusion technology[C]∥Proc of IEEE International Conference on Information Theory and Information Security,2010:V4-314-V4-318. 被引量:1

二级参考文献18

  • 1Solanki K, Sarkar A, Manjunath B S. YASS: Yet another steganographic scheme that resists blind steganalysis[C]. Lecture Notes in Computer Science. Berlin: Springer, 2007, 4567: 16-31. 被引量:1
  • 2Sarkar A, Solanki K, Manjunath B S. Further study on YASS: Steganography based on randomized embedding to resist blind steganalysis[C]. Proc of SPIE-IS&T Electronic Imaging, Security, Forensics, Steganography, and Watermarking of Multimedia Contents X. San Jose: SPIE Press, 2008, 6819-681917:1-11. 被引量:1
  • 3Kharrazi M, Sencar H, Memon N. Improving steganalysis by fusion techniques: A case study with image steganalysis[C]. Proc of SPIE. San Jose: SPIE Press, 2006: 123-137. 被引量:1
  • 4Andrew D K. A fusion of maximum likelihood and structural steganalysis[C]. Lecture Notes in Computer Science. Berlin: Springer, 2007, 4567: 204-219. 被引量:1
  • 5Benjamin M R, Gilbert L E Sos S A. Multi-class classifi-cation averaging fusion for detecting steganography[C]. Proc of IEEE Int Conf on System of Systems Engineering. Washington DC: IEEE, 2007: 1-5. 被引量:1
  • 6Rodriguez B, Peterson G, Bauer K. Fusion of steganalysis systems using Bayesian model averaging[C]. IFIP Int Federation for Information Processing. Boston: Springer, 2008: 345-355. 被引量:1
  • 7Dong J, Chen X C, Guo L, et al. Fusion based blind image steganalysis by boosting feature selection[C]. LectureNotes in Computer Science. Berlin: Springer, 2008, 5041: 87-98. 被引量:1
  • 8Sun Z W, Hui M M, Guan C. Steganalysis based on co-occurrence matrix of differential image[C]. Proc of IIHMSP 2008. Harbin, 2008: 15-17. 被引量:1
  • 9Rocha A, Goldenstein S, Scheirer W, et al. The unseen challenge data sets[C]. IEEE Computer Society Conf on Computer Vision and Pattern Recognition Workshops. Washington DC: IEEE Computer Society, 2008: 1-8. 被引量:1
  • 10Chang C C, Lin C J. LIBSVM: A library for Support Vector Machines[EB/OL]. [2008-09-10]. http://www.csie. ntu.edu.tw/cjlin/libsvm. 被引量:1

共引文献39

同被引文献19

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部