摘要
自从Geronimo,Hardin和Massopust使用分形插值函数构造出GHM多小波以来,对多小波的研究已引起了很多的关注。出于多通道滤波理论的需要及欲得到比2尺度小波更具灵活性的小波a尺度多小波理论被引入。2012年,Soon-Geol Kwon在SCI杂志《Applied Mathematics and Computation》对双向多小波理论做了探讨。但是,双向多小波理论还远未发展成熟,有许多重要论题还有待探讨。文章给出了一类a尺度紧支撑双向正交多小波的构造算法,最后给出双向多小波的构造算例。
Since the Geronimo, Hardin and Massopust using fractal interpolation function is construc- ted on the GHM multi--wavelet, multi--wavelet has attracted a lot of attentions, The need for multi channel filtering theory and to obtain the wavelet is more flexible than the 2 scale wavelet, a scale multi-- wavelet theory is introduced. In 2012, Soon--Geol Kwon at the SCI magazine 《Applied Mathematics and Computation》discussed the theory of two--way multi--wavelet. But , two--direction multi--wavelet theo- ry is far from mature, there are many important issues still to be explored. In this paper presents the con- struction algorithm a kind of a scale compactly supported two--direction orthogonal multi--wavelet, final- ly, given two--dircetion multi--wavelet construction example.
出处
《新疆师范大学学报(自然科学版)》
2014年第3期46-53,共8页
Journal of Xinjiang Normal University(Natural Sciences Edition)
关键词
双向多分辨分析
a尺度
紧支撑
Two--direction multi--resolution analysis
A scale
Compact supported