摘要
给定一对属于L2(R)的紧支撑加细函数和~,当它们满足适度的条件时,构造了一个a尺度小波ψ并且使得小波jψk=aj/2ψ(aj.-k)(j,kZ)构成L2(R)的R iesz基,相应地,{jψk:j,kZ}成为L2(R)的小波基.
A pair of compactly supported refinable functions Ф and Ф in L^2 (R) was given, when it satisfied a very mild condition, a wavelet φ, of dilation factor a was created and the wavelets φjk = a^j/2φ ( a^j·-k) (j, k ∈ Z) form a Riesz basis for L^2 (R) . Consequently, { φjk:j, k ∈ Z } is a wavelet basis for L2 (R) .
出处
《海南大学学报(自然科学版)》
CAS
2006年第4期336-341,共6页
Natural Science Journal of Hainan University
关键词
小波
多分辨分析
RIESZ基
a尺度
wavelets
multiresolution analysis
Riesz bases
dilation factor a