摘要
K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。本文主要阐述了K-means的基本算法流程,总结评述了改进的k-means算法的研究现状,以及和经典算法的比较。最后总结了k-means算法存在的一些问题,并指出了改进的方向。
出处
《电子技术与软件工程》
2014年第18期207-207,共1页
ELECTRONIC TECHNOLOGY & SOFTWARE ENGINEERING