期刊文献+

利用人工鱼群算法求解一类函数的极值 被引量:1

An artificial fish swarm algorithm solving extrema of a kind of functions
下载PDF
导出
摘要 人工鱼群算法是一种基于动物行为的群体智能寻优算法,具有并行性、全局性、简单性、快速性、跟踪性等优点,可以处理一些非凸、非线性等方面的问题.针对一类不可用经典方法求解极值的函数,提出了一种基于人工鱼群算法求解这一类函数极值的方法,并通过仿真实验的研究,验证了该算法求解函数极值是有效可行的。 The artificial fish swarm algorithm is a swarm intelligence optimization algorithm based on the animal behavior.The algorithm has some advantages in terms of parallelism.global ehavior, simplicity,speediness, traceability and so on. And it is able to solve some nonconvex and nonlinear problems. In order to solve extrema of a kind of functions that can not be solved with the classical method.an artificial fish swarm algorithm is made to solve this problem. And the emulated numerical experiment confirmed it is feasible and efficient.
出处 《韶关学院学报》 2009年第12期7-10,共4页 Journal of Shaoguan University
基金 四川省教育厅青年项目(07ZB043)
关键词 人工鱼群算法 函数极值 集群智能 artificial fish swarm algorithm extrema of function swarm intelligence
  • 相关文献

参考文献7

二级参考文献37

共引文献973

同被引文献15

  • 1倪传坤,周建中,付波.基于改进不变矩的发电机组轴心轨迹识别[J].电力科学与工程,2004,20(2):16-18. 被引量:19
  • 2王植,贺赛先.一种基于Canny理论的自适应边缘检测方法[J].中国图象图形学报(A辑),2004,9(8):957-962. 被引量:213
  • 3范玉军,王冬冬,孙明明.改进的人工鱼群算法[J].重庆师范大学学报(自然科学版),2007,24(3):23-26. 被引量:43
  • 4He X, Li J, Wei D, et al. Canny edge detection on a virtual hexagonal image structure [C]//Pervasive Computing (JCPC), 2009 Joint Conferences on. IEEE, 2009: 167-172. 被引量:1
  • 5Xiao W, Hui X. An improved canny edge detection algorithm based on predisposal method for image corrupted by Gaussian noise [C]//World Automation Congress (WAC), 2010. IEEE, 2010: 113-116. 被引量:1
  • 6Hu M K. Visual pattern recognition by moment invariants [J]. Information Theory, IRE Transactions on, 1962, 8(2): 179-187. 被引量:1
  • 7Huang Z, Leng J. Analysis of Hu's moment invariants on image scaling and rotation [C]//Computer Engineering and Technology (ICCET), 2010 2nd International Conference on IEEE, 2010, 7. V7-476-V7-480. 被引量:1
  • 8Chen Q, Petriu E, Yang X. A comparative study of Fourier descriptors and Hu's seven moment invariants for image recognition[C]//Electrical and Computer Engineering, 2004. Canadian Conference on IEEE, 2004, 1: 103-106. 被引量:1
  • 9Specht D F. Probabilistic neural networks [J]. Neural networks, 1990, 3(1): 109-118. 被引量:1
  • 10Iounousse J, Farhi A, Chehouani H, et al. Unsupervised classification of grayscale image using Probabilistic Neural Network (PNN) [C]//Multimedia Computing and Systems (ICMCS), 2012 International Conference on. IEEE, 2012: 101-105. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部