摘要
针对具有时空不变名义模型的空间连接系统,讨论其存在有界、线性、时空变化和有结构性约束的模型误差时,取得鲁棒性能的条件.对于时间轴和空间轴,分别定义了算子的时间变化率和空间变化率,给出了系统取得鲁棒性能时该变化率的上界和下界.研究表明,对于时间轴和空间轴上变化率满足一定条件、具有结构约束的有界模型误差,系统取得鲁棒性能的充分必要条件是存在频率域上的缩放矩阵(D标度),使得系统名义模型范数小于1.
This paper investigates robust performance for a kind of spatially interconnected dynamic systems under bounded, linear, time-varying, space-varying, structured uncertainties. Both temporal rate-of-variation and spatial rate- of-variation are introduced to a linear time-varying and space-varying operator. On the premise of guaranteeing robust performances, both upper and lower bounds are obtained for the maximal rate-of-variation of uncertainties. It is proved that the existence of a temporal and spatial frequency dependent D-scale matrix that can render the norm of the nominal model less than one is necessary and sufficient for robust performances against time-varying and space-varying structured bounded uncertainties with appropriate rate-of-variations.
出处
《自动化学报》
EI
CSCD
北大核心
2014年第10期2098-2107,共10页
Acta Automatica Sinica
基金
国家重点基础研究发展计划(973计划)(2009CB320602)
国家自然科学基金(61174122
61021063)资助~~
关键词
空间连接系统
鲁棒性能
模型误差
非因果性
结构不确定性
Spatially interconnected system, robust performance, model errors, noncausality, structured uncertainties