期刊文献+

时效复杂网络结构可控性研究 被引量:7

On the Structural Controllability of Temporal Complex Networks
下载PDF
导出
摘要 在对有关静态网络结构可控性研究进行归纳总结的基础上,进一步提出时效网络结构的可控性研究方法。首先,通过改进后的最大匹配方法,初步揭示出时效网络的可控性特征;其次,通过将时效网络映射到LTV系统,给出研究时效网络结构可控的规范框架;最后,在此框架的基础之上,进一步分析了单节点控制器情形下的网络节点控制中心性的上下界。 With reviewing the existing studies on the structural controllability of static networks, we explore the approach to understand and analyze the structural controllability of temporal networks. We firstly reveal the characteristics of the structural controllability of temporal networks by the improved maximum matching method; then, by mapping a temporal into a LTV system, we give a framework to study the structural controllability of temporal networks; finally, on the basis of this framework, we further analyze the upper and lower bounds of network nodesr con- trolling centrality in the case of single controller.
作者 潘玉剑 李翔
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2015年第2期23-31,共9页 Complex Systems and Complexity Science
基金 国家自然科学基金(61273223) 国家杰出青年科学基金 科技部973计划(2010CB731403) 教育部高校博士点基金(20120071110029)
关键词 结构可控性 时效网络 线性时不变系统 线性时变系统 structural controllability temporal networks linear time-invariant systems linear time-variant systems
  • 相关文献

参考文献37

  • 1Kalman R E. Mathematical description of linear dynamical systems[J]. Journal of the Society for Industrial &. Applied Mathematics, Series A: Control, 1963, 1(2): 152 -192. 被引量:1
  • 2Siljak D. Decentralized Control of Complex Systems[M]. New York: Academic Press, 1991. 被引量:1
  • 3陈关荣.漫谈系统与网络[J].复杂系统与复杂性科学,2010,7(2):1-4. 被引量:3
  • 4ErdosP, Renyi A, On random graphs I[J]. Publ Math Debrecen , 1959, 6: 290-297. 被引量:1
  • 5Erdos P, Renyi A. On the evolution of random graphs[J]. Selected Papers of Alfred Renyi , 1976, 2: 482 - 525. 被引量:1
  • 6Lin C T. Structural controllability[J]. Automatic Control , IEEE Transactions on, 1974, 19(3): 201- 208. 被引量:1
  • 7Shields R W. Pearson J B. Structural controllability of multiinput linear systems[J]. IEEE Trans on AC, 1976, 21( 2) : 203 - 212. 被引量:1
  • 8Mayeda H. On structural controllability theorem[J]. Automatic Control, IEEE Transactions on, 1981, 26(3): 795 -798. 被引量:1
  • 9Watts D J, Strogatz S H. Collective dynamics of 'small-world'networks[J]. Nature, 1998, 393(6684): 440 - 442. 被引量:1
  • 10Barabdsi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509 - 512. 被引量:1

二级参考文献52

  • 1汪小帆,李翔,陈关荣.2012网络科学导论(北京:高等教育出版社),第161页. 被引量:5
  • 2Erdos P, Renyi A. On the evolution of random graphs. Publi- cation of the Mathematical Institute of Hungarian Academy of Sciences, 1960, 5:17-61. 被引量:1
  • 3Watts D J, Strogatz S H. Collective dynamics of "small- world" networks. Nature, 1998, 393(6684): 440-442. 被引量:1
  • 4Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509-512. 被引量:1
  • 5Newman M E J, Watts D J. Renormalization group analysis of the small-world network model. Physics Letters A, 1999, 263(4-6): 341-346. 被引量:1
  • 6Newman M E J. Networks: An Introduction. Oxford: Ox- ford University Press, 2010. 被引量:1
  • 7Chen G R, Wang X F, Li X. Introduction to Complex Net- works: Models, Structures and Dynamics. Beijing: High Ed- ucation Press, 2012. 被引量:1
  • 8Wang X F, Chen G R. Pinning control of scale-free dynam- ical networks. Physica A: Statistical Mechanics arid Its Ap- plications, 2002, 310(3-4): 521-531. 被引量:1
  • 9Li X, Wang X F, Chen G R. Pinning a complex dynamical network to its equilibrium. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2004, 51(10): 2074-2086. 被引量:1
  • 10Cho A. Scientific link-up yields "control panel" for networks Science, 2011, 332(6031): 777. 被引量:1

共引文献69

同被引文献36

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部