期刊文献+

混沌腔体中电场边缘概率分布模型 被引量:1

Marginal Probability Distribution Models of Electric Field in Chaotic Cavity
下载PDF
导出
摘要 为研究有限容量样本下电场分布情况,基于边缘分布理论方法,得到混沌腔体内电场边缘分布模型。该模型在混沌条件下一致性收敛速度快,当样本容量N>10时,最大相对误差收敛于0.004 5。与此同时,利用混响室实测数据及理想波混沌场,对边缘分布模型的有效性进行试验验证,结果表明:该边缘分布模型与样本分布基本重合;无论对单自由度还是3自由度的波混沌场都可以很好地拟合场的分布,优于传统的Weilbull、Rayleigh分布。该模型对有限样本下混沌电场的统计分布规律的描述,具有重要的理论价值和指导意义。 In order to investigate the statistical distribution of chaotic electric field under the condition of finite number of samples, we obtained a marginal distribution model of electric field in chaotic cavity using the marginal distribution theory. With the assumption of chaos, the marginal model has high fitting accuracy and high convergence, and when there are more than 10 samples, the model's relative error of probability is less than 0.004 5. We also verified the marginal model on the basis of data from the practical reverberation fields and some ideal chaotic fields. The results show that the marginal model fits well with the samples and the chaotic fields of both single-degree and three-degree freedoms, and it has better performance than the Rayleigh distribution and the Weibull distribution. The proposed marginal model provides a theoretical basis and guidance for statistically describing the chaotic electric field distribution with limited number of samples.
出处 《高电压技术》 EI CAS CSCD 北大核心 2014年第9期2791-2796,共6页 High Voltage Engineering
基金 国家自然科学基金(61201120)~~
关键词 混沌腔体 电场 概率分布 边缘分布 有限容量样本 分布模型 chaotic cavity electric field probability distribution marginal distribution finite samples distribution model
  • 相关文献

参考文献16

  • 1Schroeder M R.Normal frequency and excitation statistics in rooms:model experiments with electric waves[J].Journal of the Audio Engineering Society,1987,35(5):307-316. 被引量:1
  • 2谭武端,余志勇,宋建社.混响室电场的概率分布模型研究[J].高电压技术,2012,38(9):2349-2353. 被引量:5
  • 3王庆国,王树峤,贾锐.混响室中漫射场对同轴电缆的耦合规律[J].高电压技术,2014,40(6):1630-1636. 被引量:3
  • 4Gradoni G; Antonsen T M,Anlage S,et al.Random coupling model for the radiation of irregular apertures[C]// Proceedings of 2013 URSI Intemational Symposium on Electromagnetic Theory (EMTS).[S.l.]:IEEE,2013:272-275. 被引量:1
  • 5Gradoni G; Antonsen T M,Ott E.Impedance and power fluctuations in linear chains of coupled wave chaotic cavities[J].Physical Review E,2012,86(4):046204. 被引量:1
  • 6Wame L K,Lee K S H,Hudson H G,et al.Statistical properties of linear antenna impedance in an electrically large cavity[J].IEEE Transactions on Antennas and Propagation,2003,51(5):978-992. 被引量:1
  • 7Warne L K,Johnson W A,Jorgenson R E.An improved statistical model for linear antenna input impedance in an electrically large cavity[R].Albuquerque,USA:Sandia National Laboratories,2005. 被引量:1
  • 8Hill D A.Plane wave integral representation for fields in reverberation chambers[J].IEEE Transactions on Electromagnetic Compatibility,1998,40(3):209-217. 被引量:1
  • 9Lemoine C,Besnier P,Drissi M.Investigation of reverberation chamber measurements through high-power goodness-of-fit tests[J].IEEE Transactions on Electromagnetic Compatibility,2007,49(4):745-755. 被引量:1
  • 10Beckmann P.Probability in communication engineering[M].New York,USA:Harcourt,Brace & World,1967:10-105. 被引量:1

二级参考文献37

  • 1ZHANG Ming ZHANG Jian-hua JIANG Jun ZHANG Ping WU Yu-fei.Broadband channel measurement and analysis[J].The Journal of China Universities of Posts and Telecommunications,2006,13(3):24-28. 被引量:2
  • 2[3]YIP K W,NG T S.A Simulation Model for Nakagami-m Fading Channels,m《1[J].IEEE Transaction on Communications,2000,48(2):214-221. 被引量:1
  • 3[4]PATZOLD M,KILLAT U,LAUE F,et al.On the Statistical Properties of Deterministic Simulation Models for Mobile Fading Channels[J].IEEE Transaction on Vehicular Technology,1998,47(2):254-269. 被引量:1
  • 4[5]BEAULIEU N C,CHENG C.An efficient procedure for Nakagami-m fading simulation[EB/OL].[2007-04-12].http://ieeexplore.ieee.org/iel5/7633/20837/00966304.pdf?arnumber=966304. 被引量:1
  • 5[6]YACOUB M D,VARGAS BAUTISTA J E.On Higher Order Statistics of the Nakagami-m Distribution[J].IEEE Transaction on Vehicular Technology,1999,48(3):790-794. 被引量:1
  • 6[7]ABDI A,WILLS H A,BARGER M S,et al.Comparison of the level crossing rate and average fade duration of Rayleigh,Rice and Nakagami fading models with mobile channel data[EB/OL].[2007-03-01].http://ieeexplore.ieee.org/Xplore/loginconcurrency.jsp?url=/iel5/7084/19144/00886139.pdf?arnumber=886139. 被引量:1
  • 7[9]YACOUB M D,VARGAS Bautist J E.Second-order statistics for diversity-combining techniques in Nakagami-fading channels[J].IEEE Transactions on Vehicular Technology,2001,50(6):1464-1470. 被引量:1
  • 8[10]ISKANDER C,MATHIOPOULOS P.Analytical level crossing rates and average fade durations for diversity techniques in Nakagami fading channels[J].IEEE Transaction on Communications,2002,50(8):1301-1309. 被引量:1
  • 9[11]YACOUB M D,FILHO J.Simple closed-form solutions for level crossing rate and average fade duration in Nakagami-m equal gain combining[J].Electronics Letters,2002,38(5):1734-1735. 被引量:1
  • 10[12]PARSONS D.The Mobile Radio Propagation Channel[M].New York:Wiley,1992. 被引量:1

共引文献8

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部