期刊文献+

一种新的未知杂波环境下的PHD滤波器 被引量:9

Novel PHD filter in unknown clutter environment
下载PDF
导出
摘要 针对多目标跟踪中概率假设密度(PHD)滤波器在杂波模型与先验知识不匹配情况下滤波性能急剧下降的缺点,将增广状态空间引入PHD滤波器,提出了一种新的未知杂波环境下的PHD滤波器.该滤波器利用增广状态空间区分目标状态空间与杂波状态空间,通过量测对杂波模型进行估计,不需要杂波先验知识,避免了因杂波强度的先验知识选择不当而造成PHD滤波器跟踪性能下降的问题.仿真结果表明,该算法在未知杂波环境下,具有稳定的跟踪效果;在保证实时性的前提下,其跟踪精度与传统PHD滤波器在杂波模型匹配情况下相当. Aiming at improving the poor performance of the Probability Hypothesis Density(PHD) filter when the clutter model and the prior knowledge are mismatched,a novel PHD filter into which we introduce the augmented state space and which is used under the unknown clutter circumstance is proposed in this paper.The proposed filter can distinguish the target state space and the clutter state space by the augmented state space.Using the estimate of the unknown clutter model from the measurement,the filter can avoid the tracking performance reduction caused by the improper model selection of the unknown clutter.Simulation results show that the proposed algorithm can achieve a stable tracking performance under the unknown clutter circumstance and a tracking accuracy equal to that of the conventional PHD filter used in the unknown clutter circumstance in the real-time context.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第5期18-23,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61372003) 国家自然科学基金青年基金资助项目(61101246 61301289) 中央高校基本科研业务费专项资金资助项目(K5051202014) 国家留学基金资助项目(201206965015)
关键词 多目标跟踪 概率假设密度 未知杂波 增广状态空间 multitarget tracking probability hypothesis density unknown clutter augmented state space
  • 相关文献

参考文献15

  • 1王宝树,李芳社.基于数据融合技术的多目标跟踪算法研究[J].西安电子科技大学学报,1998,25(3):269-272. 被引量:46
  • 2Mahler R. Statistical Multisource-multitarget Information Fusion[M]. Boston: Artech House Publishers, 2007. 被引量:1
  • 3杨柏胜,姬红兵,高小东.随机集粒子滤波的快速被动数据关联算法[J].西安电子科技大学学报,2010,37(4):655-659. 被引量:6
  • 4Lian Feng, Han Chongzhao, Liu Weifeng. Estimating Unknown Clutter Intensity for PHD Filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4) : 2066-2078. 被引量:1
  • 5Zhou Xin, Jiang Ju, Wang Congqing. Maximum Likelihood Parameter Estimation for GO Distribution via EM Algorithm [C]//Proceedings of the 10th International Bhurban Conference on Applied Sciences and Technology. Washington: IEEE, 2013: 89-93. 被引量:1
  • 6Watanabe R, Okamura H, Dohi T. An Efficient MCMC Algorithm for Continuous PH Distributions[C]//Proceedings of the Winter Simulation Conference. New York: IEEE, 2012: 1-12. 被引量:1
  • 7Mahler R, E1-Fallah A. CPHD and PHD Filters for Unknown Backgrounds, Part Ⅲ : Tractable Multitarget Filtering in Dynamic Clutter[C]//Proceedings of SPIE: 7698. Bellingham: SPIE, 2010 : 76980F. 被引量:1
  • 8Mahler R, Vo B T, Vo B N. CPHD Filtering with Unknown Clutter Rate and Detection Profile[J]. IEEE Transactions on Signal Processing, 2011, 59(8): 3497-3513. 被引量:1
  • 9Zheng Xuetao, Song Liping. Improved CPHD Filtering with Unknown Clutter Rate[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation. Piscataway: IEEE, 2012: 4326-4331. 被引量:1
  • 10Streit R, Stone L. Bayes Derivation of Multitarget Intensity Filters[C]//Proceedings of the International Conference on Information Fusion. Piscataway: IEEE, 2008: 4632414. 被引量:1

二级参考文献9

  • 1李良群,姬红兵.基于最大熵模糊聚类的快速数据关联算法[J].西安电子科技大学学报,2006,33(2):251-256. 被引量:14
  • 2Mahler R.Multi-target Bayes Filtering Via First-order Multi-target Moments[J].IEEE Trans on Aerospace and Electronic Systems,2003,39(4):1152-1178. 被引量:1
  • 3Clark D E,Bell J.Multi-target State Estimation and Track Continuity for the Particle PHD Filter[J].IEEE Trans on Aerospace and Electronic Systems,2007,43(4):1441-1453. 被引量:1
  • 4Clark D,Ruiz I T,Petillot Y,et al.Particle PHD Filter Multiple Target Tracking in Sonar Image[J].IEEE Trans on Aerospace and Electronic Systems,2007,43(1):409-416. 被引量:1
  • 5Arulampalam M S,Maskell S,Gordon N,et al.A Tutorial on Particle Filters for Online Nonlinear/non-Gaussian Bayesian Tracking[J].IEEE Trans on Signal Processing,2002(50):174-188. 被引量:1
  • 6Vo B,Singh S,Doucet A.Sequential Monte Carlo Methods for Multi-target Filtering with Random Finite Sets[J].IEEE Trans on Aerospace and Electronic Systems,2005,41(4):2855-2865. 被引量:1
  • 7王利辰,硕士学位论文,1997年 被引量:1
  • 8周昊,硕士学位论文,1996年 被引量:1
  • 9刘进忙,杨万海,杨柏胜,左涛.一种新的目标仰角信息航迹不变量参数估计原理[J].西安电子科技大学学报,2008,35(6):986-991. 被引量:6

共引文献50

同被引文献72

  • 1赵巨波,符燕,耿文东.海杂波统计特性分析[J].现代雷达,2005,27(11):4-6. 被引量:29
  • 2罗军辉,姬红兵,刘靳.一种基于空间滤波的红外小目标检测算法及其应用[J].红外与毫米波学报,2007,26(3):209-212. 被引量:37
  • 3Mahler R. Statistical multisource-multitarget information fusion[M]. Artech House, Norwood, MA, 2007:565-651. 被引量:1
  • 4Mahler R. Multitarget bayes filtering via first-Order multi- target moments[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (4) : 1152-1178. 被引量:1
  • 5Ouyang C, Ji H B, Guo Z Q. Extensions of the SMC- PHD for jump Markov systems [ J ]. Signal Processing, 2012,92(6) : 1422-1430. 被引量:1
  • 6Liu W F, Han C Z, Lian F, et al. Muhitarget state ex- traction for the PHD filter using MCMC approach [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2010,46(2) : 864-883. 被引量:1
  • 7Vo B N, Ma W K. The Gaussian mixture probability hy- pothesis density filter [ J ]. IEEE Transactions on Signal Processing, 2006, 54( 11): 4091-4104. 被引量:1
  • 8Wang Y, Jing Z L, Hu S Q, et al. Detection-guided muhi-target Bayesian filter [ J ]. Signal Processing, 2012,92(2) :564-574. 被引量:1
  • 9Liu Z X, Xie W X, Wang P, et al. A sequential GM- based PHD filter for a linear Gaussian system [ J ]. Sci China Inf Sci, 2013, 56(10) : 102302_1-102302_10. 被引量:1
  • 10Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters [ J ]. IEEE Transactions on Signal Processing, 2008, 56 ( 8 ) : 3447 -3457. 被引量:1

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部