期刊文献+

区域杂波估计的多目标跟踪方法 被引量:5

Region Clutter Estimation Method for Multi-target Tracking
原文传递
导出
摘要 高斯粒子概率假设密度(PHD)滤波往往假定杂波密度参数已知,这种做法对于实际应用是不现实的。此外,杂波的参数值通常依赖于环境条件,可能随时间发生变化。因此,多目标跟踪算法中需要实时准确估计杂波密度的参数。基于此,提出了一种多目标跟踪的区域杂波估计方法。首先根据量测信息在线估计出场景中的杂波数目,然后估计落入目标附近感兴趣区域的杂波数,并估计每个目标感兴趣区域杂波强度。仿真结果表明,在复杂场景下算法的跟踪性能明显优于未进行杂波估计的多目标跟踪算法,提高了跟踪的实时性和跟踪精度。 Gaussian mixture particle probability hypothesis density (PHD) filter often assumes that the clutter density param- eters are known. This method is impractical for real applications. In addition, the parameter values of the clutter points are usually dependent on environmental conditions, and they may change over time. Therefore, it is desirable for multiple-target tracking algorithm in real time to estimate the clutter density parameters. In this paper, a method of the clutter estimation a- bout multi-target tracking is presented. Firstly, we estimate the number of clutter points in the scene online. Secondly, we estimate the clutter number and intensity in each region of interest. Simulation results show that its tracking performance is much better than those of multiple-target tracking algorithms which have not estimated the clutter intensity in complex situa- tions and that it improves the real-time tracking and tracking accuracy.
出处 《航空学报》 EI CAS CSCD 北大核心 2014年第4期1091-1101,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家级项目(9140A******13DZ01)~~
关键词 概率假设密度 目标跟踪 粒子滤波 杂波估计 随机有限集 probability hypothesis density target tracking particle filter clutter estimation random finite set
  • 相关文献

参考文献5

二级参考文献86

  • 1潘泉,叶西宁,张洪才.广义概率数据关联算法[J].电子学报,2005,33(3):467-472. 被引量:29
  • 2Bar Shalom Y, Fortmann T E. Tracking and data association[M]. San Diego, CA: Academic, 1988: 1- 34. 被引量:1
  • 3Kirubarajan T, Bar-Shalom Y. Probabilistic data association techniques for target tracking in clutter[J]. Proceed ings of the IEEE, 2004, 92(3): 536-557. 被引量:1
  • 4Musicki D, Scala B L. Multi target tracking in clutter without measurement assignment[J].IEEE Transaction on Aerospace and Electronic Systems, 2008, 44(3): 877 896. 被引量:1
  • 5Roecker J A, Phillis G L. Suboptimal joint probabilistic data association[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 510-517. 被引量:1
  • 6Blackman S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5- 18. 被引量:1
  • 7Mahler R P S. Multitarget Bayes filtering via first order multitarget moments [J].IEEE Transactions on Aero space and Electronic Systems, 2003, 39(4): 1152- 1178. 被引量:1
  • 8Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transaction on Signal Processing, 2006, 54(11): 4091-4104. 被引量:1
  • 9Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multi target filtering with random finite sets [J]. IEEE Transaction on Aerospace and Electronic Systems, 2005, 41(4):1224-1245. 被引量:1
  • 10Sidenbladh H. Multi-target particle filtering for the probability hypothesis density[C]//Proceedings of 6th International Conference on Information Fusion. 2003:800- 806. 被引量:1

共引文献33

同被引文献24

  • 1张恒,樊晓平,瞿志华.基于多假设跟踪的移动机器人自适应蒙特卡罗定位研究[J].自动化学报,2007,33(9):941-946. 被引量:14
  • 2GRANSTROM K, LUNDQUIST C, ORGUNER U. Extended target tracking using a Gaussian-mixture PHD filter [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268-3286. 被引量:1
  • 3MAHLER R. PHD filters for nonstandard targets: I extended targets [C]//Proceedings of the 12th Inter- national Conference on Information Fusion. Piscat-away, NJ, USA: IEEE, 2009: 915-921. 被引量:1
  • 4GRANSTROM K, LUNDQUIST C, ORGUNER U. A Gaussian mixture PHD filter for extended target tracking [C]//Proceedings of the 13th International Conference on Information Fusion. Piscataway, NJ, USA.. IEEE, 2010: 1-8. 被引量:1
  • 5ORGUNER U C, LUNDQUIST C, GRANSTROM K. Extended target tracking with a cardinalized proba- bility hypothesis density filter [C]///Proceedings of the 14th International Conference on Indormation Fusion. Piscataway, NJ, USA.. IEEE, 2011: 5-8. 被引量:1
  • 6LIAN F, HAN C Z. Unified cardinalized probability hypothesis density filters for extended targets and un- resolved targets [J]. Signal Processing, 2012, 92(7).. 1729-1744. 被引量:1
  • 7ZHANG Y Q, JI H B. A novel fast partitioning algo- rithm for extended target tracking using a Gaussian mixture PHD filter [J]. Signal Processing, 2013, 93 (11) : 2975-2985. 被引量:1
  • 8TSAI C W, YANG C S, CHIANG M C. A time effi- cient pattern reduction algorithm for k-means based clustering [C] // IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ, USA: IEEE, 2007: 504-509. 被引量:1
  • 9LIYX, XIAO H T, SONGZY. Anewmultipleex- tended target tracking algorithm using PHD filter [J]. Signal Processing, 2013, 93(7): 3578-3588. 被引量:1
  • 10王殿伟,李言俊,张科.基于S变换的时频特征提取与目标识别[J].航空学报,2009,30(2):305-310. 被引量:7

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部