期刊文献+

静电作用力算法对分子动力学模拟结果的影响分析

Understanding the Effect of the Parameters of Electrostatic Interactions in Molecular Dynamics Simulation
原文传递
导出
摘要 蛋白质分子和界面之间的作用在药物输送以及生物分离等领域至关重要。利用分子动力学模拟考察蛋白质分子在界面附近的行为是最近10年研究的热点。在早期的工作中,Wang等发现同电荷离子交换介质可用于辅助蛋白质复性,但其机理不甚明确。在利用分子动力学模拟研究其分子机理时发现,不同静电作用力参数对模拟结果有直接的影响。因此,通过全原子分子动力学模拟考察不同静电参数条件对模拟结果的影响,展示此过程的构象和能量变化,分析了造成结果差异的原因。研究结果揭示了不同静电参数对模拟结果的影响,为进一步研究蛋白质在界面表面的行为奠定了一定的理论基础。 The study of interactions between protein molecules and interfaces are essential for a number of applications such as drug delivery and biotechnical separation. The interactions between proteins and interfaces have been studied frequently by molecular dynamics (MD) simulations in the last ten years. In the early work, it is confirmed that the like-charged ion-exchange resin is efficient to suppress the aggregation of the protein folding intermediates, leading to a significant increase of native protein recovery by Wang. However, the working mechanism was not clarified. It was found the chosen of electrostatic interaction functions were significant on the results of the MD simulations. In the present study, the role of the electrostatic interaction functions in the all-atom MD simulations was studied; the conformation and the energy change in the process were calculated to reveal the reasons of the difference results. These results provide molecular insights into the effect of electrostatic interaction functions on the molecular dynamics simulations results. Furthermore, a theoretical foundation was established for the further research on the interactions between proteins and interfaces.
作者 李浩 白姝
出处 《化学工业与工程》 CAS 2014年第5期74-79,共6页 Chemical Industry and Engineering
关键词 静电作用力算法 带电表面 分子动力学模拟 分子机理 electrostatic interaction functions charged surface molecular dynamics simulations molecular mechanism
  • 相关文献

参考文献18

  • 1Mark P, Nilsson L. Structure and dynamics of liquid water with different long-range interaction truncation and temperature control methods in molecular dynamics sim- ulations [ J 1. Journal of Computational Chemistry, 2002, 23(13): 1 211-1 219. 被引量:1
  • 2Yonetani Y. A severe artifact in simulation of liquid wa- ter using a long cut-off length: Appearance of a strange layer structure [ J ]. Chemical Physics Letters, 2005, 406(1/3) : 49 -53. 被引量:1
  • 3Bergdorf M, Peter C. Influence of cut-off truncation and artificial periodicity of electrostatic interactions in molec- ular simulations of solvated ions: A continuum electro- statics study [ J ]. Journal of Chemical Physics, 2003, 119(17) : 9 129 -9 144. 被引量:1
  • 4Wang G, Dong X, Sun Y. Ion-Exchange resins greatly facilitate refolding of like-charged proteins at high con- centrations [J ]. Biotechnology and Bioengineering, 2011, 108:1 068-1 077. 被引量:1
  • 5白红军,来鲁华.蛋白质相互作用:界面分析,结合自由能计算与相互作用设计[J].物理化学学报,2010,26(7):1988-1997. 被引量:11
  • 6Ravichandran S, Madura J D, Talbot J. A brownian dy- namics study of the initial stages of hen egg-white lyso- zyme adsorption at a solid interface [ J]. The Journal of Physical Chemistry B, 2001, 105(17): 3 610-3 613. 被引量:1
  • 7Kubiak-Ossowska K, Mulheran P A. Mechanism of hen egg white lysozyme adsorption on a charged solid surface [J]. Langmuir, 2010, 26(20): 15 954-15965. 被引量:1
  • 8Zhang L, Zhao G, Sun Y. Effects of ligand density on hydrophobic charge induction chromatography: Molecu- lar dynamics simulation [ J]. Journal of Physical Chem- istry B, 2010, 114(6) : 2 203 -2 211. 被引量:1
  • 9Diamond R. Real-Space refinement of the structure of hen egg-white lysozyme [J]. Journal of Molecular Biol- ogy, 1974, 82(3): 371 -391. 被引量:1
  • 10Schuttelkopf A W, Van Aalten D M F. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes [ J]. Acta Crystallographiea Section D: Bio- logical Crystallography, 2004, 60 : 1 355 - 1 363. 被引量:1

二级参考文献105

  • 1Nooran,I.M.;Thornton,J.M.EMBO J.,2003,22:3486. 被引量:1
  • 2Berman,H.M.;Westbrook,J.,Feng,Z.K.;Gilliland,G.;Bhat,T.N.;Weissig,H.;Shindyalov,I.N.;Bourne,P.E.Nucleic Acids Res.,2000,28:235. 被引量:1
  • 3Karanicolas,J.;Kuhlman,B.Curr.Opin.Struct.Biol.,2009,19:458. 被引量:1
  • 4Mandell,D.J.;Kortemme,T.Nat.Chem Biol.,2009,5:797. 被引量:1
  • 5Duan,Y.H.;Reddy,B.V.;Kaznessis,Y.N.Protein Sci.,2005,14:316. 被引量:1
  • 6Gabb,H.A.;Jackson,R.M.;Sternberg,M.J.J.Mol.Biol.,1997,272:106. 被引量:1
  • 7Wiehe,K.;Peterson,M.W.;Pierce,B.;Mintseris,J.;Weng,Z.P.Methods Mol.Biol.,2008,413:283. 被引量:1
  • 8Choi,Y.S.;Yang,J.S.;Choi,Y.;Ryu,S.H.;Kim,S.Proteins,2009,77:14. 被引量:1
  • 9Liang,S.D.;Meroueh,S.O.;Wang,G.C.;Qiu,C.;Zhou,Y.Q.Proteins,2009,75:397. 被引量:1
  • 10Li,X.;Keskin,O.;Ma,B.Y.;Nussinov,R.;Liang,J.J.Mol.Biol.,2004,344:781. 被引量:1

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部