期刊文献+

基于ELM和FOA的股票价格预测 被引量:7

Stock price prediction based on ELM and FOA
下载PDF
导出
摘要 针对股票价格预测中应用极限学习机预测存在稳定性不理想的问题,提出了一种改进果蝇优化极限学习机(IFOA-ELM)预测模型的算法。在该算法中,果蝇群通过不断调整群半径来优化ELM的输入层与隐含层连接权值和隐含层阈值,并以优化后的结果为基础,构建ELM预测模型。将IFOA-ELM模型用于股票价格预测。实验表明,与ELM和FOA-ELM相比,IFOA-ELM在股票价格预测中具有更高的预测精度和更好的稳定性。 Extreme Learning Machine(ELM)is not stable in predicting stock price. To address the problem, this paper proposes an Improved Fruit Fly of Algorithm(IFOA)that optimizes ELM by improving fruit fly. In the algorithm, fruit fly swarm constantly adjusts its radius to optimize the ELM input weights and thresholds of hidden layer, building an ELM prediction model with the optimized results. The IFOA-ELM model proposed in this paper can be applied to predicting stock price. Compared with ELM and FOA-ELM, IFOA-ELM model is more accurate and stable in predicting stock price.
作者 李栋 张文宇
出处 《计算机工程与应用》 CSCD 2014年第18期14-18,32,共6页 Computer Engineering and Applications
基金 陕西省自然科学基金(No.2012GQ8050) 陕西省教育厅专项科研计划项目(No.13JK0403) 西安邮电大学中青年基金(No.104-0410)
关键词 股票价格 预测 果蝇优化算法 极限学习机 stock price prediction Fruit Fly of Algorithm (FOA) Extreme Learning Machine (ELM)
  • 相关文献

参考文献15

  • 1Zhang Yudong, Wu Lenan.Stock market prediction of S&P 500 via combination of improved BCO approach and BP neural network[J].Expert Systems with Applica- tions, 2009,36 (5) : 8849-8854. 被引量:1
  • 2Vanstone B,Finnie G.An empirical' methodology for devel- oping stock market trading systems using artificial neural networks[J].Expert Systems with Applications, 2009,36 ( 3 ) : 6668-6680. 被引量:1
  • 3郝华宁,刘阳.基于遗传神经网络的个股价格短期预测[J].西安石油大学学报(自然科学版),2010,25(2):88-90. 被引量:10
  • 4郑斯日古楞.灰色神经网络在股票价格预测中的应用[J].计算机仿真,2012,29(2):382-385. 被引量:18
  • 5Huang G B, Zhu Q Y, Siew C K.Extreme learning machine : a new learning scheme of feedforward neural networks[C]// 2004 International Joint Conference on Neural Networks, Budapest, Hungar, 2004 : 958-990. 被引量:1
  • 6Huang G B, Zhu Q Y, Siew C K.Extreme learning machine : theory and applications[J].Neurocomputing,2006,70(1/3): 489-501. 被引量:1
  • 7高光勇,蒋国平.采用优化极限学习机的多变量混沌时间序列预测[J].物理学报,2012,61(4):37-45. 被引量:55
  • 8Suresh S, Babu R V, Kim H J.No-reference image quality assessment using modified extreme learning machine clas- sifier[J].Applied Soft Computing, 2009 (2) : 541-552. 被引量:1
  • 9Huang G B,Chen L, Siew C K.Universal approximation using incremental feedforward networks with arbitrary input weights[J].Neural Networks,2006,17(4) : 879-892. 被引量:1
  • 10Lan Yuan, Yeng C S, Huang Guangbin.Ensemble of online sequential extreme learning machine[J].Neurocomputing, 2009,72( 1 ) :3391-3395. 被引量:1

二级参考文献32

共引文献303

同被引文献67

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部