期刊文献+

基于全局搜索的实时分布场目标跟踪方法 被引量:8

Real-time and global searching tracking algorithm based on distributions fields
下载PDF
导出
摘要 提出了一种基于分布场的全局匹配搜索的实时目标跟踪算法,克服了原始分布场的局部搜索和实时性差的局限。采用相关系数代替原始算法的L1范数度量目标分布场与候选区域分布场的距离,有利于运用傅里叶变换,将相关系数从计算复杂度高的时域转换到计算复杂度低的频域来实现,并且能一次算出目标分布场和检测区域所有候选分布场的相似度,从而保证算法的实时性和全局搜索能力,克服稀疏采样方法的随机性和局部结果最优性。实验结果表明,与最近代表性的跟踪算法相比,提出的方法在多个具有挑战性的视频序列中,在平均误差、跟踪速度和成功率上获得了最佳的性能。 This paper presented a real-time and global search tracking algorithm based on distribution field (DF) to overcome the limitation of local search and poor real-time in original DF tracking. The correlation coefficient instead of L1 -norm was used to measure the distance between target model DF and candidate region DF. With the aid of Fourier transform, correlation coef- ficient computed in the frequency domain with low computational complexity rather than the time domain so that the similarities between target DF and all candidate region DFs would be got fast. It could ensure the algorithm' s real-time performance and global searching ability, and then overcame the sparse sampling methods' limitation of randomness and local optimality. Com- pared with recent tracking algorithms, experimental results show that the proposed method gets the best performance in the av- erage error and tracking speed in a number of challenging video sequences.
出处 《计算机应用研究》 CSCD 北大核心 2014年第10期3169-3172,3176,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61003151) 中央高校基本科研业务费专项基金资助项目(QN2013055 QN2013062)
关键词 分布场 傅里叶变换 全局搜索 目标跟踪 相关系数 distribution field (DF) Fourier transform global search object tracking correlation coefficient
  • 相关文献

参考文献16

  • 1YILMAZ A, JAVED O, SHAH M.Object tracking:a survey[J].ACM Computing Surveys(CSUR),2006,38(4):Article 13. 被引量:1
  • 2YANG Han-xuan, ZHENG Feng, WANG Liang, et al.Recent advances and trends in visual tracking:a review[J].Neurocomputing,2011,74(18):3823-3831. 被引量:1
  • 3BAKER S, MATTHEWS I.Lucas-Kanade 20 years on:a unifying framework[J].International Journal of Computer Vision,2004,56(3):221-255. 被引量:1
  • 4COLLINS R T.Mean-shift blob tracking through scale space[C]// Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Press,2003:II-234-40. 被引量:1
  • 5NING Ji-feng, ZHANG Lei, ZHANG D, et al.Robust mean shift tracking with corrected background-weighted histogram[J].IET Computer Vision,2012,6(1):62-69. 被引量:1
  • 6VIOLA P, JONES M.Rapid object detection using a boosted cascade of simple features[C]// Proc of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Press,2001:511-518. 被引量:1
  • 7BABENKO B, YANG Ming-hsuan, BELONGIE S.Robust object tracking with online multiple instance learning[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2011,33(8):1619-1632. 被引量:1
  • 8姚志均.一种新的空间直方图相似性度量方法及其在目标跟踪中的应用[J].电子与信息学报,2013,35(7):1644-1649. 被引量:19
  • 9SEVILLA-LARA L, LEARNED-MILLER E.Distribution fields for tracking[C]//Proc of IEEE Conference on Computer Vision and Pattern Recognition.[S.l.]:IEEE Press,2012:1910-1917. 被引量:1
  • 10ZHANG Kai-hua , ZHANG Lei, YANG Ming-hsuan.Real-time compressive tracking[C]//Proc of European Conference on Computer Vision.2012:864-877. 被引量:1

二级参考文献20

  • 1Comaniciu D, Ramesh V, and Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. 被引量:1
  • 2Dunne P and Matuszewski B. Choice of similarity measure, likelihood function and parameters for histogram based particle filter tracking in CCTV grey scale video].I], Image and Vision Computing, 2011, 29(2/3): 178-189. 被引量:1
  • 3Gordon N, Arulampalam M S, Maskell S, ei al .. A tutorial on particle filters for online non-linear /nongaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. 被引量:1
  • 4Nummiaro K, Koller-Meier E, and Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003, 21(1): 99-110. 被引量:1
  • 5Elgammal A, Duraiswami R, and Davis L S. Probabilistic tracking inJoint feature-spatial spaces[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, 2003: 781-788. 被引量:1
  • 6Wang H, Suter D, Schindler K, et al.. Adaptive object tracking based on an effective appearance filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1661-1667. 被引量:1
  • 7Birchfield STand Rangarajan S. Spatiograms versus histograms for region-based tracking[C]. Proceedings ofIEEE Conference on Computer Vision and Pattern Recognition. San Diego, 2005: 1158-1163. 被引量:1
  • 8Huang C, Li Y, Ai H, et al .. Robust head tracking with particles based on multiple cues[C]. Proceedings of ECCV Workshop on HCI, Graz, 2006: 1-11. 被引量:1
  • 9O'Connor N E, O'Conaire C, and Smeaton A. Thermo-visual feature fusion for object tracking using multiple spatiogram trackers[J]. Machine Vision and Application, 2008, 19(5/6): 483-494. 被引量:1
  • 10Smeaton A F, O'Conaire C, and O'Connor N E. An improved spatiogram similarity measure for robust object localization[C]. Proceedings of ICASSP, Honolulu, 2007: 1067-1072-. 被引量:1

共引文献129

同被引文献54

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部