摘要
本文提出了一种对模板匹配算法进行改进的快速算法。首先,对模板内所有像素进行排序并差分变换为函数F1(),将模板覆盖下的子图像函数f(x,y)累进求和变换为函数F2(),然后求取F1()与F2()乘积的最大值。由于模板存在大量灰度值相同的像素,经排序差分后F1()中会有很多0和1,乘1和0的运算可以不做,从而消去了模板运算中的大量乘法和加法运算,同时在模板匹配移动过程中利用相邻窗口间的数据相关性,减少重复运算,和传统匹配算法相比,计算复杂度大大降低。
To improve the traditional algorithm, a fast image matching method is presented, First, sort the template and differential transform to be function F1(), image which under the template transform to F2() by recurrence sum f(x,y), Second, select the max production of F1() and F2(). Pixels in template are the same in a large number, after sorting and differencing, there are a lot of 0 and 1, so reduce lots of operation about multiplication and addition in template matching algorithm, at the time, using the relativity of the neighbor window to reduce the repeat operation in the process of template moving, compared with the traditional algorithm, it' s make a big reduce in computational complexity.
出处
《微计算机信息》
北大核心
2007年第24期296-297,257,共3页
Control & Automation
基金
国家自然科学基金资助项目(60573079)
关键词
图像匹配
差分
快速算法
计算复杂度
image matching, differential, fast algorithm, computational complexity