期刊文献+

双树复小波特征在运动想象脑电识别中的应用 被引量:10

The Application of DTCWT Feature in Recognition of Motor Imagery
下载PDF
导出
摘要 提出了一种基于双树复小波变换的运动想象脑电信号特征提取方法。针对传统离散小波抗混叠性差的缺陷,采用双树复小波变换对脑电信号进行分解与重构,得到各子带信号能量并进行归一化处理,选取α、β节律信号的归一化能量作为想象运动的特征进行SVM分类。通过对仿真信号的分析,证实双树复小波变换具有良好的混叠抑制能力和抗噪性。最后选用国际脑机接口竞赛和实验室实测的运动想象数据进行分类识别。实验结果表明,双树复小波变换是一种有效的特征提取方法,其运动想象特征的识别率要优于常用的特征分析方法。 The paper proposed an algorithm of feature extraction of EEG based on Dual-Tree Complex Wavelet Transform. Considering the defect of severe frequency aliasing resulted from Discrete Wavelet Transform, this paper first extracted the sub-band signals of EEG by DTCWT decomposition and reconstruction, and then calculated the energy of each signal and normalized them. Support Vector Machine was applied to recognize the pattern of motor imagery by selecting the normalized rhythm c~ ,/3 as the features. Also, the simulated signals were analysed to confirm that the DTCWT had a satisfying effect on reducing aliasing effects and noise resistance. Finally, international BCI competition signals and the measured motor imagery data were selected for classification. The results showed that the DTCWT was an effective method of feature extraction, which could also obtain a higher recognition rate than the methods in common use.
出处 《传感技术学报》 CAS CSCD 北大核心 2014年第5期575-580,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(61172134) 浙江省国际科技合作项目(2013C24016)
关键词 脑电信号 双树复小波变换 特征提取 抗混叠分析 EEG DTCWT feature extraction anti-aliasing analysis
  • 相关文献

参考文献15

  • 1Valbuena D,Cyriacks M,Friman O,et al.Brain-Computer Interfacefor High-Level Control of Rehabilitation Robotic Systems[C]/ / Re-habilitation Robotics,2007 ICORR 2007 IEEE 10th InternationalConference on.IEEE,2007:619-625. 被引量:1
  • 2Marshall D,Coyle D,Wilson S,et al.Games,Gameplay,and BCI:The State of the Art [J].IEEE Transactions on ComputationalIntelligence and AI in Games,2013,5(2):82-99. 被引量:1
  • 3Pfurtscheller G, Lopes F H.Event-Related EEG/ MEGSynchronization and Desynchronization Basic Principles [J].Clinical Neurophysiology,1999,110(11):1842-1857. 被引量:1
  • 4徐宝国,宋爱国,费树岷.在线脑机接口中脑电信号的特征提取与分类方法[J].电子学报,2011,39(5):1025-1030. 被引量:58
  • 5Xu Q,Zhou H,Wang Y,et al.Fuzzy Support Vector Machine forClassification of EEG Signals Using Wavelet-Based Features[J].Medical Engineering and Physics,2009,31(7):858-865. 被引量:1
  • 6王攀,沈继忠,施锦河.想象左右手运动的脑电特征提取[J].传感技术学报,2010,23(9):1220-1225. 被引量:16
  • 7杨建国.小波分析及其工程应用[M].北京:机械工业出版社,2007. 被引量:15
  • 8艾树峰.基于双树复小波变换的轴承故障诊断研究[J].中国机械工程,2011,22(20):2446-2451. 被引量:29
  • 9Kingsbury N G.The Dual-Tree Complex Wavelet Transform:A NewTechnique for Shift Invariance and Directional Filters[C]/ / Proc8th IEEE DSP Workshop.Utah,1998,8:86. 被引量:1
  • 10Wang Yanxue, He Zhengjia, Zi Yanyang.Enhancement of SignalDenoising and Multiple Fault Signatures Detecting in RotatingMachinery Using Dual-Tree Complex Wavelet Transform [J].Mechanical Systems and Signal Processing, 2010, 24 ( 1 ): 119-137. 被引量:1

二级参考文献72

共引文献160

同被引文献111

  • 1潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242. 被引量:115
  • 2杜修力,何立志,侯伟.基于经验模态分解(EMD)的小波阈值除噪方法[J].北京工业大学学报,2007,33(3):265-272. 被引量:44
  • 3Mporas I,Tsirka V, Zacharaki E I, et al. Seizure Detection UsingEEG and ECG Signals for Computer-Based Monitoring, Analysisand Management of Epileptic Patients [J]. Expert Systems withApplications,2015,42(6) :3227-3233. 被引量:1
  • 4Donoho D L. De-Noising by Soft-Thresholding[J]. IEEE Transac-tions on Information Theory, 1995,41(3) :613-627. 被引量:1
  • 5Zhang X,Feng X,Wang W,et al. Image Denoising via 2D Diction-ary Learning and Adaptive Hard Thresholding [ J ]. Pattern Recog-nition Letters,2013,34( 16) :2110-2117. 被引量:1
  • 6Simoncelli E P. Bayesian Denoising of Visual Images |n th^i Wave-let Domain[M]. New York:Springer, 1999;291-308. 被引量:1
  • 7Cho D, Bui T D. Multivariate Statistical Modeling for Image De-noising Using Wavelet Transforms [J]. Signal Processing: ImageCommunication,2005,20( 1) : 77-89. 被引量:1
  • 8Sendur L’Selesnick I W. Bivariate Shrinkage Functions for Wave-let- Based Denoising Exploiting Interscale Dependency [j]. IEEETransactions on Signal Processing,2002,50( 11): 2744-2756. 被引量:1
  • 9Min D’Jiuwen Z, Yide M. Image Denoising via Bivariate Shrink-age Function Based on a New Structure of Dual Contourlet Trans-form[j]. Signal Processing,2015,109:25-37. 被引量:1
  • 10Sethunadh R, Thomas T. Spatially Adaptive Image Denoising Us-ing Inter-Scale Dependence in Directionlet Domain [j]. IET Im-age Processing ,2014,9(2) : 142-152. 被引量:1

引证文献10

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部