期刊文献+

单目视觉下目标三维行为的时间尺度不变建模及识别 被引量:5

Time-scale Invariant Modeling and Classifying for Object Behaviors in 3D Space Based on Monocular Vision
下载PDF
导出
摘要 提出一种单目视觉下在线识别目标三维行为的方法.该方法用匹配的标记点估计帧间相似变换,然后转换相似矩阵到对数空间以获取一致的四自由度运动参数序列.为解决持续时间敏感问题,提出基于多边形近似算法的时间尺度不变特征,并用动态规划实现特征序列的在线提取.在行为识别阶段,基于动态时间规整训练有限类别行为模板用于匹配测试行为序列.实验结果表明,该行为模板较对比方法类别可分性平均提高60%以上,并且可用于在线识别连续视频中的未知行为. We present an approach to classify 3D behaviors online under monocular vision. We estimate similarity transformation between frames by matched markers, then transforms the similarity matrixes to logarithmic space to generate unified parameter sequence with 4 degrees of freedom. To eliminate the sensitivity of duration time, we formulate a time-scale invariant feature (TSIF) based on polygonal approximation algorithm, and implement online feature picking- up with dynamic programming. In the recognition phase, we use dynamic time warping to train the behavior templates with limited categories then recognize the test sequences. The experimental results show that the class separability of the proposed behavior template is increased by at least 60 % to the comparative approaches, furthermore, recognizing unknown behaviors in continuous video online is achieved.
出处 《自动化学报》 EI CSCD 北大核心 2014年第8期1644-1653,共10页 Acta Automatica Sinica
关键词 三维重构 姿态估计 时间尺度不变特征 模板匹配 行为识别 3D reconstruction, posture estimation, time-scale invariant feature (TSIF), template matching, behaviorrecognition
  • 相关文献

参考文献29

  • 1谷军霞,丁晓青,王生进.行为分析算法综述[J].中国图象图形学报,2009,14(3):377-387. 被引量:40
  • 2Ji X F, Liu H H. Advances in view-invariant human motion analysis: a review. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 2010, 40(1): 13-24. 被引量:1
  • 3Parameswaran V, Chellappa R. View invariance for human action recognition. International Journal of Computer Vision, 2006, 66(1): 83-101. 被引量:1
  • 4Weinland D, Ronfard R, Boyer E. Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding, 2006, 104(2-3): 249-257. 被引量:1
  • 5Yamato J, Ohya J, Ishii K. Recognizing human action in time-sequential images using hidden Markov model. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Champaign, IL: IEEE, 1992. 379-385. 被引量:1
  • 6Brand M, Oliver N, Pentland A. Coupled hidden Markov models for complex action recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Juan: IEEE, 1997. 994-999. 被引量:1
  • 7Galata A, Johnson N, Hogg D. Learning variable-length Markov models of behavior. Computer Vision and Image Understanding, 2001, 81(3): 398-413. 被引量:1
  • 8Luo Y, Wu T D, Hwang J N. Object-based analysis and interpretation of human motion in sports video sequences by dynamic Bayesian networks. Computer Vision and image Understanding, 2003, 92(2-3): 196-216. 被引量:1
  • 9杜友田,陈峰,徐文立.基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法[J].自动化学报,2009,35(3):225-232. 被引量:23
  • 10Bobick A F, Davis J W. The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3): 257-267. 被引量:1

二级参考文献95

  • 1李妍婷,罗予频,唐光荣.单目视频中的多视角行为识别方法[J].计算机应用,2006,26(7):1592-1594. 被引量:8
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3冯波,赵春晖,杨涛,张洪才,程咏梅.基于光流特征与序列比对的实时行为识别[J].计算机应用研究,2007,24(3):194-196. 被引量:6
  • 4Aggarwal J K, Cai Q. Human motion analysis: A review [ J]. Computer Vision and Image Understanding, 1999, 73 (3) : 428-440. 被引量:1
  • 5Gavrila D M. The visual analysis of human movement: A survey [ J]. Computer Vision and Image Understanding, 1999, 73( 1 ): 82-98. 被引量:1
  • 6Moeslund Thomas B, Granum Erik. A survey of computer visionbased human motion capture [ J ]. Computer Vision and Image Understanding, 2001, 81 (3): 231-286. 被引量:1
  • 7Moeslund Thomas B, Hilton Adrian, Kruger Volker. A survey of advances in vision-based human motion capture and analysis [ J]. Computer Vision and Image Understanding, 2006, 104(3) : 90-126. 被引量:1
  • 8Johansson G. Visual motion perception [ J ]. Scientific American, 1975, 232(2) : 76-88. 被引量:1
  • 9Robertson N, Reid I. A general method for human activity recognition in video [ J ]. Computer Proceedings of Vision and Image Understanding, 2006, 104(2-3): 232-248. 被引量:1
  • 10Ryoo M S, Aggarwal J K. Recognition of composite human activities through context-free grammar based representation [ A ]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [C], New York, USA, 2006: 1709-1718. 被引量:1

共引文献73

同被引文献40

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部