期刊文献+

基于模型降阶的最优分数阶PID控制器设计 被引量:2

Design of Optimized Fractional Order PID Controller Based on Model Reduction
下载PDF
导出
摘要 由于一些受控对象较为复杂或者模型系统阶次较高,使得控制器的设计变得非常困难,这会造成控制系统的鲁棒性和动态特性下降;文章在H2范数模型降阶的基础上提出一种新的降阶模型结构,它可以使降阶后的模型扩展到分数阶并且更加精确地逼近各种高阶系统,并以降阶后模型的幅频、相频和对象增益变化的鲁棒特性为约束条件进行最优分数阶PID控制器的设计;仿真实验证明,与原有闭环控制系统相比,基于模型降阶的最优分数阶PID控制器控制下的闭环系统具有更好的动态性能,并且鲁棒性较强。 The design of controllers are difficult because of the complex and high order control systems, which reduce the dynamic performance and robustness. First, this paper briefly introduces the common methods of H2 norm model reduction, then a new model reduction based on that is proposed, which extends to the fractional order after the mode reduction and models a large variety of higher order systems with greater accuracy. And the optimal fractional PID controller is designed with the constraint conditions of the reduced order model of the phase margin and gain crossover frequency and robustness to gain variation. The simulation experiments prove that compared with the original closed--loop control system, the controlled by optimized fractional order PID can get better dynamic performance and have strong robust.
出处 《计算机测量与控制》 北大核心 2014年第8期2482-2484,2494,共4页 Computer Measurement &Control
基金 国家自然科学基金项目(61203047)
关键词 模型降阶 H2范数 频域 最优分数阶PID model reduction H2 norm frequency domain optimized fractional order PID controller
  • 相关文献

参考文献13

  • 1Podlubny I. Fractional-order systems and controllers [J]. IEEE Trans on Automatic Control, 1999, 44 (1):208- 214. 被引量:1
  • 2严慧,刘坤,汪木兰.分数阶PI^λD^μ控制器控制性能的研究[J].计算机仿真,2009,26(11):335-338. 被引量:8
  • 3胡海波.分数阶PID控制器参数的整定和研究[D].淮南:安徽理工大学,2010. 被引量:1
  • 4Monjie C A, Calderon A J, Vinagre B M. On traetonal PI^λ controllers: some tuning rules for robustness to plant uncertainties [J]. Nonlilncar Dynamics, 2004, 38:369-381. 被引量:1
  • 5李大字,刘展,靳其兵,曹柳林.分数阶控制器参数整定策略研究[J].系统仿真学报,2007,19(19):4402-4406. 被引量:19
  • 6严慧.分数阶PI^λD^μ胁控制器的设计及数字实现[D].南京:南京航空航天大学,2007. 被引量:1
  • 7刘晋胜,彭志平,周靖.一种多策略并行遗传算法研究[J].计算机测量与控制,2011,19(5):1188-1190. 被引量:5
  • 8Zamani M, Ghartemani M K, Sadati N, et al. Design of a fractional order PID controller for an AVR using particle swarm optimization [J]. Computers and Mathematics with Applications, 2009, 17: 1380 - 1387. 被引量:1
  • 9Chen Y Q, Vinager B M, podlubny I. Continued fraction expansion approaches to discretizing fractional order derivatives an expository review [J]. Nonlincar Dynamics, 2004, 38 (1-4) : 155 - 170. 被引量:1
  • 10薛定宇,陈阳泉.控制数学问题的Matlab求解[M].北京:清华大学出版社,2006. 被引量:3

二级参考文献37

共引文献30

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部