期刊文献+

复杂系统的分数阶内模控制器设计 被引量:8

Design of fractional order internal model controller for complex system
原文传递
导出
摘要 针对高阶复杂系统提出一种分数阶内模控制器设计方法.利用微粒群算法(PSO)进行模型化简,基于内模控制(IMC)原理设计分数阶控制器,该控制器仅有一个可调参数,并根据鲁棒性能指标给出控制器参数整定的解析表达式.仿真结果表明,该方法可以使系统同时具有良好的目标值跟踪特性、扰动抑制特性以及克服参数变化的鲁棒性. A designing method of fractional order internal model controller is proposed for complex systems. Firstly, the model is reduced by using the particle swarm optimization(PSO) algorithm. Then a fractional order controller is designed based on the principles of internal model control(IMC). The controller has only one adjustable parameter. Moreover,according to a robustness index, the analytical expression of controller parameter tuning is given. The simulation results show that the fractional order internal model controller can provide a better dynamic performance of both the command tracking and disturbance rejection and a better robustness against the parameters perturbation of the system.
出处 《控制与决策》 EI CSCD 北大核心 2015年第3期531-535,共5页 Control and Decision
基金 国家自然科学基金项目(61203049) 山西省自然科学基金项目(2012011027-4)
关键词 复杂系统 内模控制 分数阶控制器 鲁棒性 complex system internal model control fractional order controller robustness
  • 相关文献

参考文献21

  • 1Monje C A, Chen Y Q, Vinagre B M. Fractional order systems and controls: Fundamentals and applications[M]. London: Springer-Verlag, 2010: 75-77. 被引量:1
  • 2Malek H, Luo Y, Chen Y Q. Identification and tuning fractional order proportional integral controllers for time delayed systems with a fractional pole[J]. Mechatronics, 2013, 23(7): 746-754. 被引量:1
  • 3Podlubny I. Fractional-order systems and PID controllers[J]. IEEE Trans on Automatic Control, 1999, 44(1): 208-214. 被引量:1
  • 4Zhao C N, Xue D Y, Chen Y Q. A fractional order PID tuning algorithm for a class of fractional order plants[C]. Proc of IEEE Int Conf: Mechatronics and Automation. Piscataway: IEEE Press, 2005: 216-221. 被引量:1
  • 5Das S, Pan I, Das S, et al. Improved model reduction and tuning of fractional-order PIlambdaDmu controllers for analytical rule extraction with genetic programming[J]. ISA Trans, 2012, 51(2): 237-261. 被引量:1
  • 6Chen Y Q, Dou H, Vinagre B M, et al. A robust tuning method for fractional order PI controllers[C]. The 2nd IFAC Symposium on Fractional Derivatives and Applications. Piscataway: IEEE Press, 2006: 22-27. 被引量:1
  • 7Cheon Y J, Kyung H R, Su W S, et al. PID auto-tuning using new model reduction method and explicit PID tuning rule for a fractional order plus time delay model[J]. J of Process Control, 2014, 24(1): 113-128. 被引量:1
  • 8Vu T N L, Lee M. Analytical design of fractional- order proportional-integral controllers for time-delay processes[J]. ISA Trans, 2013, 52(5): 583-591. 被引量:1
  • 9Xue D Y, Chen Y Q. A comparative introduction of four fractional order controllers[C]. Proc of the 4th World Congress on Intelligent Control and Automation, Shanghai: IEEE Press, 2002: 3228-3235. 被引量:1
  • 10Luo Y, Chen Y Q. Fractional order [proportional derivative] controller for a class of fractional order systems[J]. Automatica, 2009, 45(10): 2446-2450. 被引量:1

二级参考文献46

共引文献100

同被引文献71

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部