期刊文献+

高N马氏体不锈轴承钢的热变形行为 被引量:4

Hot Deformation Behaviors of High Nitrogen Martensitic Stainless Bearing Steels
原文传递
导出
摘要 利用Gleeble-3800热模拟试验机在温度为1040-1120℃,应变速率为1~20s^-1的条件下进行了高N马氏体不锈轴承钢的热压缩变形试验。结合真应力一真应变曲线和热变形组织研究了变形参数对高N马氏体不锈轴承钢的热变形行为和碳氮化物演变规律的影响。结果表明:在该变形条件下,试验钢的真应力一真应变曲线为动态再结晶型。随着应变量的增大,碳化物的平均尺寸呈减小趋势,但数量有所增多。基于热变形方程计算得到的应变量为0.6时的热变形激活能Q为410.7kJ/mol。构建了包含应变量在内的流变应力方程,同时建立了高N马氏体不锈轴承钢的Zener-Hollomon参数本构方程。 The hot compression test of high nitrogen martensitic stainless steel was carried out using Gleeble-3800 thermal-mechanical simulator within temperature range of 1040--1 120℃ and strain rate range of 1- 20 s^-1. Combining with true stress-true strain curve and microstructure after hot deformation, the influences of deformation parameters on the hot deformation behavior and evolution law of carbon nitrides of high nitrogen martensitic stainless bearing steel were studied. The results indicate that the true stress-strain curves of the material are dynamic recrystallization type under the present deformation conditions. It is also observed that, as strain increases, the average size of carbides decreases gradually and the number of carbides increases. Based on the equation for hot deformation, the deformation activation energy (Q) of 410.7 kJ/mol was obtained at a strain of 0.6. The flow stress equation including strain and the constitutive equation of Zener-Hollomon parameter for high nitrogen martensitic stainless steel were established.
出处 《钢铁研究学报》 CAS CSCD 北大核心 2014年第7期48-54,82,共8页 Journal of Iron and Steel Research
关键词 高N马氏体不锈轴承钢 热变形 激活能 ZENER-HOLLOMON参数 本构方程 high nitrogen martensitic stainless bearing steel hot deformation activation energy Zener-Hollomon parameter constitutive equation
  • 相关文献

参考文献2

二级参考文献26

  • 1单凤兰,李吉学.形变铜中位错组态的电镜分析[J].电子显微学报,1995,14(3):186-188. 被引量:2
  • 2SELLARS C M. Modelling microstmetural development during hot rolling[J]. Mater Sci Technol, 1990, 16(11): 1072-1078. 被引量:1
  • 3HIRSCH J. Thermomechanical control in aluminium sheet production[J]. Materials Science Forum, 2003, 426(1 ): 185 - 194. 被引量:1
  • 4JAKOBSEN B, POULSEN H F, LIENERT U. Formation and subdivision of deformation structures[J]. Science, 2006, 312: 889-892. 被引量:1
  • 5HIRSTH J. Virtual fabrication of aluminum products-microstructure modeling in industrial aluminum production[M]. Weinheim: WILEY-VCH Veflag GmbH&Co KgaA, 2006: 83-110. 被引量:1
  • 6KOCKS U F, MECKING H. Physics and phenomenology of strain hardening: the FCC case[J]. Progress in Materials Sciences, 2003, 48: 171-273. 被引量:1
  • 7NES E. Modelling of work hardening and stress saturation in fcc metals[J]. Progress in Materials Science, 1998, 41 : 129-193. 被引量:1
  • 8NES E, MARTHINSEN K, RUNNING B. Modelling the evolution in microstructure and properties during processing of aluminium alloys[J]. Journal of Materials Processing Technology, 2001, 117: 333-340. 被引量:1
  • 9NES E, PETTERSEN T, MARTHINSEN K. On the mechanisms of work hardening and flow-stress saturation[J]. Scripta Mater, 2000, 43: 55-62. 被引量:1
  • 10ROTERS F, RAABE D, GOTTSTEIN G. Work hardening in heterogeneous alloys-a micro-structural approach based on three internal state variables[J]. Acta Mater, 2000, 48(17): 4184-4189. 被引量:1

共引文献49

同被引文献208

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部