摘要
采用Gleeble-1500热模拟试验机进行压缩试验,研究ZK60和ZK60(0.9Y)镁合金在变形温度为473~723K、应变速率为0.001~1s-1范围内的变形行为,计算了应力指数和变形激活能,并采用Zener-Hollomon参数法构建了合金高温塑性变形的本构关系。结果表明:在试验变形条件范围内,合金的真应力-真应变曲线为动态再结晶型;在573~723K范围内,应力指数随着变形温度的升高而增加,变形激活能随着变形温度和应变速率的改变而变化。对比ZK60合金,ZK60(0.9Y)合金的变形激活能降低了30%,且材料常数n和A值均降低。
The hot deformation behavior of ZK60 and ZK60(0.9Y) magnesium alloys was investigated by hot compressive tests on Gleeble-1500 thermal simulation test machine in temperature range from 473 to 723 K and strain rate from 0.001 to ls^-1. The stress exponent and the deformation activation energy were calculated. The constitutive equation of the plastic deformation of ZK60 alloy was obtained by introducing Zener-Hollomon parameter. The results show that the true stress-strain curves of the alloys have dynamic recrystallization character under the present deformation conditions; within the temperature range from 573 to 723 K, the stress exponent increases with the increase of deformation temperature and the increment increases gradually. The deformation activation energy changes with the deformation temperature and strain rate. Compared with the ZK60 alloy, the deformation activation energy of the ZK60(0.9Y) alloy decreases by 30% and the materials constant (n and A) also decrease.
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2010年第1期106-111,共6页
Rare Metal Materials and Engineering
基金
湖南省科技攻关项目(04GK1008-2)
关键词
塑性变形
热模拟
动态再结晶
镁合金
plastic deformation
thermal simulation
dynamic recrystallization
magnesium alloy