期刊文献+

化学气相沉积法生长石墨烯的研究 被引量:12

Study on the Growth of Graphene by Chemical Vapor Deposition Method
下载PDF
导出
摘要 以甲烷为碳源,原铜箔和用过硫酸铵清洗过的铜箔为衬底,对比研究了铜的表面结构、生长温度及冷却速率对石墨烯CVD法生长的影响。研究发现经过处理的铜箔表面粗糙度小,显微结构精细,化学活性高,更有利于石墨烯的快速形核与生长。而原铜箔因表面粗糙度大,存在大量粗大纹理结构,化学活性低,使得石墨烯的形核生长需要更高的温度。因而,对于不同衬底,选择合适的生长温度至关重要。而提高冷却速率有利于获得大尺寸、高质量并具有原生生长形貌的石墨烯。 In this article,the effects of surface texture of copper,growth temperature and cooling rate on the growth of graphene by chemical vapor deposition were studied,using methane as carbon source and raw-copper foils and treated-copper foils with ammonium persulfate as the substrates. The results show that the treated-copper foils with low roughness,fine surface structure and high chemical activity were much more favorable for the nucleation and growth of graphene. On the contrary,because of its larger surface roughness,rough texture structure and low chemical activity,the raw-copper foils made the nucleation and growth of graphene need higher temperature. So,for the growth of graphene on different substrates,it is important to choose appropriate growth temperature. Meanwhile,improving the cooling rate was favorable to obtain large-sized,high-quality graphene with original growth morphology.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2014年第7期1620-1625,共6页 Journal of Synthetic Crystals
基金 国家博士后科学基金(2012M521743) 陕西省自然科学基础研究计划(2012JM8009)
关键词 石墨烯 化学气相沉积 表面粗糙度 生长温度 冷却速率 graphene chemical vapor deposition surface roughness growth temperature cooling rate
  • 相关文献

参考文献4

二级参考文献52

  • 1田丰,成国祥,刘长军,陈世谦.骨组织损伤修复生物医用材料的研究进展[J].医疗卫生装备,2005,26(2):22-23. 被引量:14
  • 2Novoselov K S,Geim A K,Morozov S V,et al.Two-dimensional Gas of Massless Dirac Fermions in Grapheme[J].Nature,2005,438(4):197-200. 被引量:1
  • 3Son Y,Cohen M L,Louie S G.Half-metallic Graphene Nanoribbons[J].Nature,2006,444(4):347-342. 被引量:1
  • 4Han M Y,Ozyilmaz B,Zhang Y,et al.Energy Band-gap Engineering of Graphene Nanoribbons[J].Phys.Rev.Lett.,2007,98(4):206805-206809. 被引量:1
  • 5Wang Z F,Li Q X,Zheng H,et al.Tuning the Electronic Structure of Graphene Nanoribbons through Chemical Edge Modification:A Theoretical Study[J].Phys.Rev.B,2007,75(4):113406-113410. 被引量:1
  • 6Ayako H,Kazu S,Alexandra G,et al.Direct Evidence for Atomic Defects in Graphene Layers[J].Nature,2004,430(4):870-873. 被引量:1
  • 7Oeiras R Y,Araujo-Moreira F M,da Silva E Z.Defect-mediated Half-metal Behavior in Zigzag Graphene Nanoribbons[J].Phys.Rev.B,2009,80(4):073405-073409. 被引量:1
  • 8Deretzis I,Fiori G,Iannaccone G,et al.Effects due to Backscattering and Pseudogap Features in Graphene Nanoribbons with Single Vacancies[J].Phys.Rev.B,2010,81 (5):085427-085432. 被引量:1
  • 9Zheng X H,Wang R N,Song L L,et al.Impurity Induced Spin Filtering in Graphene Nanoribbons[J].Appl.Phys.Lett.,2009,95(3):123109-123112. 被引量:1
  • 10Biel B,Blase X,Francois T,et al.Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons[J].Phys.Rev.Lett.,2009,102(4):096803-096807. 被引量:1

共引文献21

同被引文献112

引证文献12

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部