期刊文献+

基于聚类的无监督式入侵检测算法研究 被引量:1

STUDY ON UNSUPERVISED INTRUSION DETECTION ALGORITHM BASED ON CLUSTERING
下载PDF
导出
摘要 研究基于无监督式聚类的入侵检测算法,提出一种无监督式方法来检测和鉴定未知的异常行为。该方法不依赖于具有标签的数据流。这种无监督的检测采用的是健壮的数据聚类技术,并结合了证据累积的子空间聚类和交互式聚类结果协同的方法来探测性地识别网络数据流量的异常。实验结果表明该无监督式检测技术提高了检测的鲁棒性,检测到的异常行为特征是通过构建高效规则来描述的。检测过程和特征表述的性能在实时网络环境下得到验证。 We discuss an unsupervised clustering-based intrusion detection algorithm,and introduce an unsupervised approach to detect and characterise the network anomalies which does not rely on traffic flows with labels. Such unsupervised detection is accomplished by means of robust data clustering techniques. By combining sub-space clustering with evidence accumulation and inter-clustering results association it blindly identifies the anomalies in traffic flows. Experimental results demonstrate that the unsupervised detection improves the robustness of the detection. The characteristics of the anomalies detected are described by building efficient filtering rules. The detection process and characterisation performances of the unsupervised approach are validated in real network environment.
作者 李云 刘学诚
出处 《计算机应用与软件》 CSCD 北大核心 2014年第8期307-310,共4页 Computer Applications and Software
基金 山东省泰安市科技计划发展项目(20131018)
关键词 无监督式检测 特征表述 独异点检测 过滤规则 异常相关性 Unsupervised detection Characterisation Outliers detection Filtering rules Anomaly correlation
  • 相关文献

参考文献1

二级参考文献11

  • 1王立新著,王迎军译.模糊系统与模糊控制教程[M]. 清华大学出版社, 2003 被引量:1
  • 2M.Sato,and Y.Sato.Fuzzy clustering model forasymmetry and self-similarity[].Proceedings of theSixth IEEE International Conference on Fuzzy Sys-tems July –.1–51997 被引量:1
  • 3H.Debar,and A.Wespi.Aggregation and correlationof intrusion-detection alerts[].Proceedings of the thInternational Symposium on Recent Advances in In-trusion Detection October –.10–122001 被引量:1
  • 4Y.Soejima,E.Y.Chen,and H.Fuji.DetectingDDoS attacks by analyzing client response patterns[].Proceedings of the Symposium on Applicationsand the Internet WorkshopsSaint Workshops Jan–Feb.42005 被引量:1
  • 5V.Paxson,and S.Floyd.Wide area traffic:The failureof Poisson modeling[].IEEE/ACM Transon Net-working.1995 被引量:1
  • 6T.E.Ozkurt,,T.Akgul,and S.Baykut.Principalcomponent analysis of the fractional brownian motionfor 0<H<0.5[].Proceedings of the International con-ference on AcousticsSpeech and Signal Processing(ICASSP’) May –.21–242006 被引量:1
  • 7Y.G.Kim,A.Shiravi,and P.S.Min.Congestionprediction of self-similar network through parameterestimation[].Network Operations and ManagementSymposium.2006 被引量:1
  • 8Guanghui He,and J.C Hou.An in-depth,analyticalstudy of sampling techniques for self-similar internettraffic[].The th International Conference on Dis-tributed Computing Systems June–.6–102005 被引量:1
  • 9H.F.Zhang,Y.T.Shu,and Oliver Yang.Estimationof Hurst parameter by variance-time plots[].Proceed-ings of the IEEE Pacific Rim Conference on Com-municationsComputers and Signal Processing Aug–.20–221997 被引量:1
  • 10A.Popescu.Traffic self-similarity[].IEEE InternationalConference on Telecommunications(ICT’) June.82001 被引量:1

共引文献1

同被引文献10

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部