期刊文献+

应用主成分分析法的ECG身份识别方法 被引量:1

Human identification based on principal components analysis of ECG signal
下载PDF
导出
摘要 提出了一种基于主成分分析法对ECG信号进行特征表述的身份识别新方法。在预处理阶段对ECG信号进行滤波、分段、归一化、抽样处理,然后计算ECG信号的协方差矩阵及协方差矩阵的特征值和特征向量,其中较大的特征值对应的特征向量具有与ECG相似的形状,利用这些特征向量可描述、表达和逼近ECG信号并用于后续的身份识别。实验结果表明:相对于ECG基点特征提取技术,该方法提高了录用率,获得了较好的识别效果。 This paper presents eigen ECG, which is based on principal component analysis, a new method for hu- man identification. In the pre-processing stage,the ECG signal was filtered, segmented, normalized and sampled. Then the covariance matrix of the ECG signal, and its eigenvalues and eigenvectors were calculated. The corre- sponding eigenvectors of the larger eigenvalues are similar to ECG in shape. They can be used for the descrip- tion, expression and approximation of ECG signal and the subsequent identification. Experimental results show that compared with ECG fiducial extraction, this method improves the enrolling rate and takes a better recogni- tion effect.
出处 《苏州科技学院学报(自然科学版)》 CAS 2010年第3期55-58,共4页 Journal of Suzhou University of Science and Technology (Natural Science Edition)
基金 山东省自然科学基金资助项目(y2006G03 y2007G14)
关键词 主成分分析 特征提取 归一化 身份识别 principal component analysis feature extraction normalization human identification
  • 相关文献

参考文献11

  • 1Israel S A,Irvine J M,Cheng A. ECG to identify individuals[J]. Pattern Recognition,2005,38( 1 ) : 138-142. 被引量:1
  • 2何欣,张永红,白净.基于小波变换模板的QRS检测方法[J].航天医学与医学工程,2003,16(6):438-442. 被引量:11
  • 3Turk M, Penfland A. Eigenfaces for recognition[J]. J Cognit. Neurosci, 1991,3 (1) :71-86. 被引量:1
  • 4Yilmaz A,Gokmen M. Eigeahill: eigenface and eigenedge[J]. Pattern Recognition ,2001,34( 1 ): 181-184. 被引量:1
  • 5Zhang J,Yan Y,Lades M. Face recognition: eigenface, elastic matching, and neural nets[J]. Proc IEEE, 1997,85(9) :1423-1435. 被引量:1
  • 6Thakor N,Zhu Y. Applications of adaptive filtering to ECG analysis: noise cancellation and arrhythmia detection[J]. IEEE Trans Biomed Eng, 1991,38(8) :785-794. 被引量:1
  • 7杨丰,余英林.小波变换在心电信号滤波处理中的应用研究[J].生物医学工程学杂志,1997,14(4):317-320. 被引量:16
  • 8邢国泉.自适应滤波器在ECG信号除噪中的应用[J].北京生物医学工程,2005,24(3):209-210. 被引量:8
  • 9Laciar E,Jane R,Brooks D H. Improved alignment method for noisy high resolution ECG and Hoher records using multiscale cross correlation[J]. IEEE Trans Biomed ,2003,50 (3) : 344-353. 被引量:1
  • 10Jane R,Rix H,Caminal P,et al. Alignment methods for averaging of high resolution cardiac signals:a comparative study of performance[J]. IEEE Trans Biomed, 1991,38 (6) : 571-579. 被引量:1

二级参考文献10

共引文献47

同被引文献13

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部