期刊文献+

Vertex-distinguishing IE-total Colorings of Cycles and Wheels 被引量:4

Vertex-distinguishing IE-total Colorings of Cycles and Wheels
下载PDF
导出
摘要 Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper. Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.
出处 《Communications in Mathematical Research》 CSCD 2014年第3期222-236,共15页 数学研究通讯(英文版)
基金 The NSF(61163037,61163054) of China the Scientific Research Project(nwnu-kjcxgc-03-61) of Northwest Normal University
关键词 GRAPH IE-total coloring vertex-distinguishing IE-total coloring vertex-distinguishing IE-total chromatic number graph, IE-total coloring, vertex-distinguishing IE-total coloring, vertex-distinguishing IE-total chromatic number
  • 相关文献

参考文献15

  • 1Balister P N, Bollobas B, Schelp R H. Vertex distinguishing colorings of graphs with -(G) = 2. Discrete Math., 2002, 252: 17-29. 被引量:1
  • 2Balister P N, Riordan 0 M, Schelp R H. Vertex distinguishing edge colorings of graphs. J. Graph Theory, 2003, 42: 95-109. 被引量:1
  • 3Bazgan C, Harkat-Benhamdine A, Li H, Wozniak M. On the vertex-distinguishing proper edge-colorings of graphs. J. Gombin. Theory Ser. B, 1999, 75: 288-30l. 被引量:1
  • 4Burris A C, Schelp R H. Vertex-distinguishing proper edge-colorings. J. Graph Theory, 1997, 26(2): 73-82. 被引量:1
  • 5Cerny J, Hornak M. Observability of a graph. Math. Slovaca, 1996, 46: 21-31. 被引量:1
  • 6Hornak M, Sotak R. Observability of complete multipartite graphs with equipotent parts. Ars Gombin., 1995, 41: 289-30l. 被引量:1
  • 7Hornak M, Sotak R. Asymptotic behaviour of the observability of Qn. Discrete Math., 1997, 176: 139-148. 被引量:1
  • 8Harary F, Plantholt M. The Point-distinguishing Chromatic Index. In: Harary F, Maybee J S. Graphs and Application. New York: Wiley Interscience, 1985: 147-162. 被引量:1
  • 9Hornak M, Sotak R. The fifth jump of the point-distinguishing chromatic index of Kn,n. Ars Gombin., 1996, 42: 233-242. 被引量:1
  • 10Hornak M, Sotak R. Localization jumps of the point-distinguishing chromatic index of Kn,n. Discuss. Math. Graph Theory, 1997, 17: 243-251. 被引量:1

同被引文献36

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部