期刊文献+

The Entire Coloring of Series-Parallel Graphs 被引量:4

The Entire Coloring of Series-Parallel Graphs
原文传递
导出
摘要 The entire chromatic number χ_(vef) (G) of a plane graph G is the minimalnumber of colors needed for coloring vertices, edges and faces of G such that no two adjacent orincident elements are of the same color. Let G be a series-parallel plane graph, that is, a planegraph which contains no subgraphs homeomorphic to K 4. It is proved in this paper that χ_(vef)(G)≤ max{8, Δ(G) + 2} and χ_(vef) (G) = Δ + 1 if G is 2-connected and Δ(G) ≥ 6. The entire chromatic number χ_(vef) (G) of a plane graph G is the minimalnumber of colors needed for coloring vertices, edges and faces of G such that no two adjacent orincident elements are of the same color. Let G be a series-parallel plane graph, that is, a planegraph which contains no subgraphs homeomorphic to K 4. It is proved in this paper that χ_(vef)(G)≤ max{8, Δ(G) + 2} and χ_(vef) (G) = Δ + 1 if G is 2-connected and Δ(G) ≥ 6.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第1期61-66,共6页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China (No. 10471078) the Doctoral Foundation of the Education Committee of China (No. 2004042204)
关键词 series-parallel graph the entire coloring the entire chromatic number series-parallel graph the entire coloring the entire chromatic number
  • 相关文献

参考文献13

  • 1Borodin, O.V. The structure of edge neighborhoods in planar graphs and the simultaneous coloring of vertices, edges and faces. Metem. Zametki, 53:35-47 (1993) (in Russian). 被引量:1
  • 2Borodin, O.V. Structural theorem on plane graphs with application to the entire coloring number. J.Graph Theory, 23:233-239 (1996). 被引量:1
  • 3Borodin, O.V., Woodall, D.R. Thirteen colouring numbers for outerplane graphs. Bull. Inst. Combin.Appl., 14:87 100 (1995). 被引量:1
  • 4Dirac, G.A. A property of 4-chromatic graphs and some results on critical graphs. J. London Math. Soc.,27:85-92 (1952). 被引量:1
  • 5Duffin, R.J. Topology of series-parallel networks. J. Math Analy. App., 10:303-318 (1965). 被引量:1
  • 6Kronk, H.V., Mitchem, J. A seven-color theorem on the sphere. Discrete Mathematics, 5:255 260 (1973). 被引量:1
  • 7Nishizeki, T., Chiba, N. Planar Graphs: Theory and Algorithms. North-holland, Amsterdam, 1988. 被引量:1
  • 8Seymour, P.D. Colouring the series-parallel graphs. Combinatorica, 10:379-392 (1990). 被引量:1
  • 9Sanders, D.P., Zhao, Y. On the entire coloring conjecture. Canad. Math. Bull., 43(1): 108-114 (2000). 被引量:1
  • 10Wang, W.F. On the colorings of outerplanar graphs. Discrete Mathematics, 147:257-269 (1995). 被引量:1

同被引文献15

  • 1HOU JianFeng,WU JianLiang,LIU GuiZhen,LIU Bin.Acyclic edge colorings of planar graphs and series-parallel graphs[J].Science China Mathematics,2009,52(3):605-616. 被引量:24
  • 2Branko Grünbaum.Acyclic colorings of planar graphs[J]. Israel Journal of Mathematics . 1973 (4) 被引量:1
  • 3Alon,Zaks.Algorithmic Aspects of Acyclic Edge Colorings[J]. Algorithmica . (4) 被引量:1
  • 4Molloy M,,Reed B.Further algorithmic aspects of the local lemma. Proceedings of the 30th Annual ACM Symposium on Theory of Computing . 1998 被引量:1
  • 5Grünbaum,B.Acyclic colorings of planar graphs. Israel Journal of Mathematics . 1973 被引量:1
  • 6Alon N,Zaks A.Algorithmic Aspects of Acyclic Edge Colorings. Algorithmica . 2002 被引量:1
  • 7Borodin,O. V.On Acyclic Colorings of Planar Graphs. Discrete Mathematics . 1979 被引量:1
  • 8Kostochka,A. V.,Melnikov,L. S.Note to the paper of B. Grünbaum on acyclic colorings. Discrete Mathematics . 1976 被引量:1
  • 9Alon,N.,McDiarmid,C.,Reed,B.Acyclic colouring of graphs. Random Structures and Algorithms . 1991 被引量:1
  • 10Alon N,Sudakov B,zaks A.Acyclic edge colorings of graphs. Journal of Graph Theory . 2001 被引量:1

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部