期刊文献+

混沌腔体的统计电磁预测技术 被引量:3

Electromagnetic statistical prediction of chaotic cavities
下载PDF
导出
摘要 随机耦合模型既继承了传统确定性电磁预测方法的优点,又能克服确定性预测方法对电大混沌腔体中电磁场量预测性能较差的问题。针对统计电磁学的研究运用现状,围绕混沌腔体的统计电磁预测技术,分析了随机耦合模型在理论研究及其测试应用中需要解决的非遍历性短周期耦合、任意孔缝辐射耦合及多腔体级联能量统计分析等关键技术及其研究思路,为随机耦合模型统计电磁预测技术的研究提供了一定的参考。 The random coupling model(RCM)not only inherits the advantage of traditional electromagnetic deterministic prediction methods,but also overcomes the problem that deterministic methods would cause a poor prediction of an electrical large chaotic cavity.Focusing on the state-of-the-art statistical electromagnetics and prediction in complex cavities,we studied the key technologies and notions of non-ergodic short ray coupling,random shape aperture coupling and statistical energy analysis in multi-cavity interconnection situation in both theory and testing,which provides references for research in RCM statistical electromagnetic testing.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2014年第3期197-203,共7页 High Power Laser and Particle Beams
基金 国家自然科学基金项目(61201120)
关键词 混沌腔体 电磁预测 统计模型 阻抗矩阵 随机耦合模型 统计能量分析 chaotic cavity electromagnetic prediction statistical model impedance matrix random coupling model statistical energy analysis
  • 相关文献

参考文献23

  • 1KayaA O,GreensteinLJ,TrappeW.Characterizingindoorwirelesschannelsviaraytracingcombinedwithstochasticmodeling[J].IEEE Trans on Wireless Commications,2009,8(8):4165-4175. 被引量:1
  • 2JafriM,ElyJ,VahalaL.GraphicalandstatisticalanalysisofairplanepassengercabinRFcouplingpathstoavionics[C]//IEEEDigitalAvionicsSystemsConference.2003,2:11. 被引量:1
  • 3JohnsonD M,Hatfield M O,PreyerGJ.RFcouplingmeasurementsonpassengeraircraftavionicsexposedtocavity-modeexcitation[C]//IEEEDigitalAvionicsSystemsConference.1995:427-432. 被引量:1
  • 4BirtcherCR,GeorgakopoulosSV,BalanisC A.In-flightEMIfrom portableelectronicdevices(PEDS):FDTDpredictionsvsmeasure-ments[C]//IEEE AntennasandPropagationSocietyInternationalSymposium.2002,2:686-689. 被引量:1
  • 5AbramsM.DawnoftheEbomb[J].IEEE Spectrum,2003,40(11):24-30. 被引量:1
  • 6NielsenPE.Effectsofdirectedenergyweapons[R].NationalDefenseUniversityWashingtonDCCenterforTechnologyandNationalSecurityPolicy,1994. 被引量:1
  • 7ParmantierJP.Numericalcouplingmodelsforcomplexsystemsandresults[J].IEEE Trans on Electromagnetic ComPatibility,2004,46(3):359-367. 被引量:1
  • 8HollandR,JohnRS.Statisticalelectromagnetics[M].London:Taylor Francis,1999. 被引量:1
  • 9LehmanT H.Astatisticaltheoryofelectromagneticfieldsincomplexcavities[R].InteractionNotes,Note494,USAFPhillipsLaborato-ry,1993. 被引量:1
  • 10KostasJG,BoverieB.Statisticalmodelforamodestirredchamber[J].IEEE Trans on Electromagnetic Compatibility,1991,33(4):366-370. 被引量:1

二级参考文献42

  • 1陈修桥,胡以华,张建华,黄友锐,何丽.计算机机箱的电磁脉冲耦合模拟仿真[J].系统仿真学报,2004,16(12):2786-2788. 被引量:24
  • 2徐学友,张延惠,黄发忠,林圣路,杜孟利.二维椭圆量子台球中的谱分析[J].物理学报,2005,54(10):4538-4542. 被引量:9
  • 3刘长军,黄卡玛,闫丽萍,蒲天乐,张文赋.电磁辐射作用于计算机主板的模拟及效应评估[J].强激光与粒子束,2006,18(5):847-852. 被引量:16
  • 4Mehta M L . Random matrices[M]. San Diego:Academic Press, 1991. 被引量:1
  • 5Hemmady S, Zheng X, Hart J, et al. Universal properties of two-port scattering, impedance, and admittance matrices of wave-chaotic systems[J]. Phys Rev E , 2006, 74: 036213. 被引量:1
  • 6Zheng X, Antonsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities: single channel case[J]. Electrornagnetics, 2006, 26 : 3-35. 被引量:1
  • 7Hemmady S, Zheng X, Antonsen T M, et al. Universal statistics of the scattering coefficient of chaotic microwave cavities[J]. Phys Rev E, 2005, 71:056215 被引量:1
  • 8Zheng X, Antonsen T M, Ott E. Statistics of impedance and scattering matrices in chaotic microwave cavities with multiple ports[J]. Electromagnetics, 2006, 26:37-55. 被引量:1
  • 9Muttalib K A , Ismail M E H. Impact of localization on Dyson's circular ensemble[J/OL], http://arxiv.org/abs/cond-mat/951005v1. 被引量:1
  • 10Ladbury J M, Lehman T H, Koepke G H 2002 IEEE International Sym- posium on Electromagnetic Compatibility, Minneapolis, Minnesota, August 19-23, 2002 p684. 被引量:1

共引文献20

同被引文献37

  • 1张悦,刘尚合,胡小锋,刘卫东.不同辐射源瞬态电磁信号辐射场特性研究[J].电波科学学报,2015,30(2):316-322. 被引量:1
  • 2庄信武,余志勇,刘光斌,滕向如,陈亮.复杂腔体电磁混沌特性统计分析[J].电波科学学报,2015,30(3):597-602. 被引量:2
  • 3赵翔,黄卡玛,陈星,闫丽萍.雷电电磁场峰值的概率分布[J].强激光与粒子束,2005,17(2):253-257. 被引量:4
  • 4Hill D A. Plane wave integral representation for fields in reverberation chambers[J]. IEEE Trans on Electromagnetic Compatibility, 1998, 40(3) : 209-217. 被引量:1
  • 5Moglie F. Convergence of the reverberation chambers to the equilibrium analyzed with the finite difference time-domain algorithm[J]. IEEE Trans on Electromagnetic Compatibility, 2004, 46(3) : 469-476. 被引量:1
  • 6Hoijer M. Maximum power available to stress onto the critical component in the equipment under test when performing bility test in the reverberation chamber [J]. IEEE Trans on Electromagnetic Compatibility, 2006, 48(2) : 372- 384. 被引量:1
  • 7Gradoni G, Moglie F, Pastore A P, et al. Numerical and experimental analysis of the field to enclosure coupling in reverberation chamber and comparison with anechoic chamber[J]. IEEE Trans on Electromagnetic Compatibility, 2006, 48(1) : 203-211. 被引量:1
  • 8IEC 61000-4 21-2011: Electromagnetic compatibitity (EMC)-part 4-21: Testing and measurement techniques - reverberation chamber test methods[S]. 被引量:1
  • 9Gradoni G, Arnaut I. R. Generalized extreme-value distributions of power near a boundary inside electromagnetic reverberation chambers [J] IEEE Trans on Electromagnetic Compatibility, 2010, 52(3) : 506-515. 被引量:1
  • 10Arnaut L R, West P I). Electromagnetic reverberation near a perfectly conducting boundary[J]. IEEE Trans on Electromagnetic Compati bility, 2006, 48(2): 359- 371. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部